
Contents

1 The Router 3

1.1 Getting started . 3

1.1.1 Installation . 3

1.1.2 Initial configuration . 3

1.1.3 Failsafe mode . 3

1.2 Configuring OpenWrt . 3

1.2.1 Network . 3

1.2.2 Wireless . 5

1.3 Advanced configuration . 9

1.3.1 Hotplug . 10

1.3.2 Init scripts . 10

1.3.3 Network scripts . 12

2 Development issues 13

2.1 The build system . 13

2.1.1 Building an image . 13

2.1.2 Creating packages . 16

2.1.3 Creating kernel modules packages 21

2.1.4 Conventions . 22

2.1.5 Troubleshooting . 22

2.2 Extra tools . 23

2.2.1 Image Builder . 23

2.2.2 SDK . 23

2.3 Adding platform support . 23

2.3.1 Which Operating System does this device run? 23

2.3.2 Finding and using the manufacturer SDK 26

1

2 CONTENTS

2.4 Debugging and debricking . 33

2.4.1 Adding a serial port . 33

2.4.2 JTAG . 33

2.5 Reporting bugs . 33

2.5.1 Using the Trac ticket system 33

Chapter 1

The Router

1.1 Getting started

1.1.1 Installation

1.1.2 Initial configuration

1.1.3 Failsafe mode

1.2 Configuring OpenWrt

1.2.1 Network

The network configuration in Kamikaze is stored in /etc/config/network and
is divided into interface configurations. Each interface configuration either refers
directly to an ethernet/wifi interface (eth0, wl0, ..) or to a bridge containing
multiple interfaces. It looks like this:

config interface "lan"
option ifname "eth0"
option proto "static"
option ipaddr "192.168.1.1"
option netmask "255.255.255.0"
option gateway "192.168.1.254"
option dns "192.168.1.254"

ifname specifies the Linux interface name. If you want to use bridging on one
or more interfaces, set ifname to a list of interfaces and add:

option type "bridge"

3

4 CHAPTER 1. THE ROUTER

It is possible to use VLAN tagging on an interface simply by adding the VLAN
IDs to it, e.g. eth0.1. These can be nested as well.

This sets up a simple static configuration for eth0. proto specifies the protocol
used for the interface. The default image usually provides ’none’ ’static’,
’dhcp’ and ’pppoe’. Others can be added by installing additional packages.

When using the ’static’ method like in the example, the options ipaddr and
netmask are mandatory, while gateway and dns are optional. DHCP currently
only accepts ipaddr (IP address to request from the server) and hostname (client
hostname identify as) - both are optional.

PPP based protocols (pppoe, pptp, ...) accept these options:

• username
The PPP username (usually with PAP authentication)

• password
The PPP password

• keepalive
Ping the PPP server (using LCP). The value of this option specifies the
maximum number of failed pings before reconnecting. The ping inter-
val defaults to 5, but can be changed by appending ”,<interval>” to the
keepalive value

• demand
Use Dial on Demand (value specifies the maximum idle time.

• server: (pptp)
The remote pptp server IP

For all protocol types, you can also specify the MTU by using the mtu option.

Setting up static routes

You can set up static routes for a specific interface that will be brought up after
the interface is configured.

Simply add a config section like this:

config route foo
option interface lan
option target 1.1.1.0
option netmask 255.255.255.0
option gateway 192.168.1.1

The name for the route section is optional, the interface, target and gateway
options are mandatory. Leaving out the netmask option will turn the route into
a host route.

1.2. CONFIGURING OPENWRT 5

Setting up the switch (currently broadcom only)

The switch configuration is set by adding a ’switch’ config section. Example:

config switch "eth0"
option vlan0 "1 2 3 4 5*"
option vlan1 "0 5"

On Broadcom hardware the section name needs to be eth0, as the switch driver
does not detect the switch on any other physical device. Every vlan option
needs to have the name vlan<n> where <n> is the VLAN number as used in
the switch driver. As value it takes a list of ports with these optional suffixes:

• ’*’: Set the default VLAN (PVID) of the Port to the current VLAN

• ’u’: Force the port to be untagged

• ’t’: Force the port to be tagged

The CPU port defaults to tagged, all other ports to untagged. On Broadcom
hardware the CPU port is always 5. The other ports may vary with different
hardware.

1.2.2 Wireless

The WiFi settings are configured in the file /etc/config/wireless (currently
supported on Broadcom and Atheros). When booting the router for the first
time it should detect your card and create a sample configuration file. By default
’option network lan’ is commented. This prevents unsecured sharing of the
network over the wireless interface.

Generic Broadcom wireless config:

config wifi-device "wl0"
option type "broadcom"
option channel "5"

config wifi-iface
option device "wl0"

option network lan
option mode "ap"
option ssid "OpenWrt"
option hidden "0"
option encryption "none"

6 CHAPTER 1. THE ROUTER

Generic Atheros wireless config:

config wifi-device "wifi0"
option type "atheros"
option channel "5"
option mode "11g"

config wifi-iface
option device "wifi0"

option network lan
option mode "ap"
option ssid "OpenWrt"
option hidden "0"
option encryption "none"

Generic multi-radio Atheros wireless conifg:

config wifi-device wifi0
option type atheros
option channel 1

config wifi-iface
option device wifi0

option network lan
option mode ap
option ssid OpenWrt_private
option hidden 0
option encryption none

config wifi-device wifi1
option type atheros
option channel 11

config wifi-iface
option device wifi1

option network lan
option mode ap
option ssid OpenWrt_public
option hidden 1
option encryption none

There are two types of config sections in this file. The ’wifi-device’ refers to
the physical wifi interface and ’wifi-iface’ configures a virtual interface on top
of that (if supported by the driver).

A full outline of the wireless configuration file with description of each field:

config wifi-device wifi device name
option type broadcom, atheros

1.2. CONFIGURING OPENWRT 7

option country us, uk, fr, de, etc.
option channel 1-14
option maxassoc 1-128 (broadcom only)
option distance 1-n
option mode 11b, 11g, 11a, 11bg (atheros only)

config wifi-iface
option network the interface you want wifi to bridge with
option device wifi0, wifi1, wifi2, wifiN
option mode ap, sta, adhoc, or wds
option ssid ssid name
option bssid bssid address
option encryption none, wep, psk, psk2, wpa, wpa2
option key encryption key
option key1 key 1
option key2 key 2
option key3 key 3
option key4 key 4
option server ip address
option port port
option hidden 0,1
option isolate 0,1

Options for the wifi-device:

• type
The driver to use for this interface.

• country
The country code used to determine the regulatory settings.

• channel
The wifi channel (e.g. 1-14, depending on your country setting).

• maxassoc
Optional: Maximum number of associated clients. This feature is sup-
ported only on the broadcom chipset.

• distance
Optional: Distance between the ap and the furthest client in meters. This
feature is supported only on the atheros chipset.

• mode
The frequency band (b, g, bg, a). This feature is only supported on the
atheros chipset.

Options for the wifi-iface:

• network
Selects the interface section from /etc/config/network to be used with
this interface

8 CHAPTER 1. THE ROUTER

• device
Set the wifi device name.

• mode
Operating mode:

– ap
Access point mode

– sta
Client mode

– adhoc
Ad-Hoc mode

– wds
WDS point-to-point link

• ssid Set the SSID to be used on the wifi device.

• bssid Set the BSSID address to be used for wds to set the mac address
of the other wds unit.

• encryption
Encryption setting. Accepts the following values:

– none

– wep

– psk, psk2
WPA(2) Pre-shared Key

– wpa, wpa2
WPA(2) RADIUS

• key, key1, key2, key3, key4 (wep, wpa and psk)
WEP key, WPA key (PSK mode) or the RADIUS shared secret (WPA
RADIUS mode)

• server (wpa)
The RADIUS server ip address

• port (wpa)
The RADIUS server port

• hidden
0 broadcasts the ssid; 1 disables broadcasting of the ssid

• isolate
Optional: Isolation is a mode usually set on hotspots that limits the clients
to communicate only with the AP and not with other wireless clients. 0
disables ap isolation (default); 1 enables ap isolation.

1.3. ADVANCED CONFIGURATION 9

Limitations: There are certain limitations when combining modes. Only the
following mode combinations are supported:

• Broadcom:

– 1x sta, 0-3x ap

– 1-4x ap

– 1x adhoc

WDS links can only be used in pure AP mode and cannot use WEP
(except when sharing the settings with the master interface, which is done
automatically).

• Atheros:

– 1x sta, 0-4x ap

– 1-4x ap

– 1x adhoc

1.3 Advanced configuration

Structure of the configuration files

The config files are divided into sections and options/values.

Every section has a type, but does not necessarily have a name. Every option
has a name and a value and is assigned to the section it was written under.

Syntax:

config <type> ["<name>"] # Section
option <name> "<value>" # Option

Every parameter needs to be a single string and is formatted exactly like a
parameter for a shell function. The same rules for Quoting and special characters
also apply, as it is parsed by the shell.

Parsing configuration files in custom scripts

To be able to load configuration files, you need to include the common functions
with:

. /etc/functions.sh

10 CHAPTER 1. THE ROUTER

Then you can use config_load <name> to load config files. The function
first checks for <name> as absolute filename and falls back to loading it from
/etc/config (which is the most common way of using it).

If you want to use special callbacks for sections and/or options, you need to
define the following shell functions before running config_load (after including
/etc/functions.sh):

config_cb() {
local type="$1"
local name="$2"
commands to be run for every section

}

option_cb() {
commands to be run for every option

}

You can also alter option_cb from config_cb based on the section type. This
allows you to process every single config section based on its type individually.

config_cb is run every time a new section starts (before options are being pro-
cessed). You can access the last section through the CONFIG_SECTION variable.
Also an extra call to config_cb (without a new section) is generated after con-
fig_load is done. That allows you to process sections both before and after all
options were processed.

You can access already processed options with the config_get command Syn-
tax:

config_get <section> <option> # prints the value of the option
config_get <variable> <section> <option> # stores the value inside the variable

In busybox ash the three-option config_get is faster, because it does not result
in an extra fork, so it is the preferred way.

Additionally you can also modify or add options to sections by using the con-
fig_set command.

Syntax:

config_set <section> <option> <value>

1.3.1 Hotplug

1.3.2 Init scripts

Because OpenWrt uses its own init script system, all init scripts must be in-
stalled as /etc/init.d/name use /etc/rc.common as a wrapper.

Example: /etc/init.d/httpd

1.3. ADVANCED CONFIGURATION 11

#!/bin/sh /etc/rc.common
Copyright (C) 2006 OpenWrt.org

START=50
start() {

[-d /www] && httpd -p 80 -h /www -r OpenWrt
}

stop() {
killall httpd

}

as you can see, the script does not actually parse the command line arguments
itself. This is done by the wrapper script /etc/rc.common.

start() and stop() are the basic functions, which almost any init script should
provide. start() is called when the user runs /etc/init.d/httpd start or (if
the script is enabled and does not override this behavior) at system boot time.

Enabling and disabling init scripts is done by running /etc/init.d/name en-
able or /etc/init.d/name disable. This creates or removes symbolic links
to the init script in /etc/rc.d, which is processed by /etc/init.d/rcS at boot
time.

The order in which these scripts are run is defined in the variable START in the
init script, which is optional and defaults to 50. Changing it requires running
/etc/init.d/name enable again.

You can also override these standard init script functions:

• boot()
Commands to be run at boot time. Defaults to start()

• restart()
Restart your service. Defaults to stop(); start()

• reload()
Reload the configuration files for your service. Defaults to restart()

You can also add custom commands by creating the appropriate functions and
referencing them in the EXTRA_COMMANDS variable. Helptext is added in EX-
TRA_HELP.

Example:

status() {
print the status info

}

EXTRA_COMMANDS="status"
EXTRA_HELP=" status Print the status of the service"

12 CHAPTER 1. THE ROUTER

1.3.3 Network scripts

Using the network scripts

To be able to access the network functions, you need to include the necessary
shell scripts by running:

. /etc/functions.sh # common functions
include /lib/network # include /lib/network/*.sh
scan_interfaces # read and parse the network config

Some protocols, such as PPP might change the configured interface names
at run time (e.g. eth0 => ppp0 for PPPoE). That’s why you have to run
scan_interfaces instead of reading the values from the config directly. Af-
ter running scan_interfaces, the ’ifname’ option will always contain the
effective interface name (which is used for IP traffic) and if the physical device
name differs from it, it will be stored in the ’device’ option. That means that
running config_get lan ifname after scan_interfaces might not return the
same result as running it before.

After running scan_interfaces, the following functions are available:

• find_config interface

looks for a network configuration that includes the specified network in-
terface.

• setup_interface interface [config] [protocol]

will set up the specified interface, optionally overriding the network con-
figuration name or the protocol that it uses.

Writing protocol handlers

You can add custom protocol handlers by adding shell scripts to /lib/network.
They provide the following two shell functions:

scan_<protocolname>() {
local config="$1"
change the interface names if necessary

}

setup_interface_<protocolname>() {
local interface="$1"
local config="$2"
set up the interface

}

scan_protocolname is optional and only necessary if your protocol uses a cus-
tom device, e.g. a tunnel or a PPP device.

Chapter 2

Development issues

2.1 The build system

One of the biggest challenges to getting started with embedded devices is that
you cannot just install a copy of Linux and expect to be able to compile a
firmware. Even if you did remember to install a compiler and every development
tool offered, you still would not have the basic set of tools needed to produce
a firmware image. The embedded device represents an entirely new hardware
platform, which is most of the time incompatible with the hardware on your
development machine, so in a process called cross compiling you need to produce
a new compiler capable of generating code for your embedded platform, and then
use it to compile a basic Linux distribution to run on your device.

The process of creating a cross compiler can be tricky, it is not something that is
regularly attempted and so there is a certain amount of mystery and black magic
associated with it. In many cases when you are dealing with embedded devices
you will be provided with a binary copy of a compiler and basic libraries rather
than instructions for creating your own – it is a time saving step but at the same
time often means you will be using a rather dated set of tools. Likewise, it is
also common to be provided with a patched copy of the Linux kernel from the
board or chip vendor, but this is also dated and it can be difficult to spot exactly
what has been modified to make the kernel run on the embedded platform.

2.1.1 Building an image

OpenWrt takes a different approach to building a firmware; downloading, patch-
ing and compiling everything from scratch, including the cross compiler. To put
it in simpler terms, OpenWrt does not contain any executables or even sources,
it is an automated system for downloading the sources, patching them to work
with the given platform and compiling them correctly for that platform. What
this means is that just by changing the template, you can change any step in
the process.

As an example, if a new kernel is released, a simple change to one of the Makefiles
will download the latest kernel, patch it to run on the embedded platform and

13

14 CHAPTER 2. DEVELOPMENT ISSUES

produce a new firmware image – there is no work to be done trying to track down
an unmodified copy of the existing kernel to see what changes had been made,
the patches are already provided and the process ends up almost completely
transparent. This does not just apply to the kernel, but to anything included
with OpenWrt – It is this one simple understated concept which is what allows
OpenWrt to stay on the bleeding edge with the latest compilers, latest kernels
and latest applications.

So let’s take a look at OpenWrt and see how this all works.

Download OpenWrt

This article refers to the ”Kamikaze” branch of OpenWrt, which can be down-
loaded via subversion using the following command:

$ svn checkout https://svn.openwrt.org/openwrt/trunk kamikaze

Additionally, there is a trac interface on https://dev.openwrt.org/ which can be
used to monitor svn commits and browse the source repository.

The directory structure

There are four key directories in the base:

• tools

• toolchain

• package

• target

tools and toolchain refer to common tools which will be used to build the
firmware image, the compiler, and the C library. The result of this is three
new directories, tool_build, which is a temporary directory for building the
target independent tools, toolchain_build_<arch> which is used for build-
ing the toolchain for a specific architecture, and staging_dir_<arch> where
the resulting toolchain is installed. You will not need to do anything with the
toolchain directory unless you intend to add a new version of one of the com-
ponents above.

• tool_build

• toolchain_build_<arch>

package is for exactly that – packages. In an OpenWrt firmware, almost ev-
erything is an .ipk, a software package which can be added to the firmware
to provide new features or removed to save space. Note that packages are also
maintained outside of the main trunk and can be obtained from subversion at
the following location:

https://dev.openwrt.org/

2.1. THE BUILD SYSTEM 15

$ svn checkout https://svn.openwrt.org/openwrt/packages packages

Those packages can be used to extend the functionality of the build system and
need to be symlinked into the main trunk. Once you do that, the packages will
show up in the menu for configuration. From kamikaze you would do something
like this:

$ ls
kamikaze packages
$ ln -s packages/net/nmap kamikaze/package/nmap

To include all packages, issue the following command:

$ ln -s packages/*/* kamikaze/package/

target refers to the embedded platform, this contains items which are specific to
a specific embedded platform. Of particular interest here is the ”target/linux”
directory which is broken down by platform <arch> and contains the patches to
the kernel, profile config, for a particular platform. There’s also the ”target/image”
directory which describes how to package a firmware for a specific platform.

Both the target and package steps will use the directory ”build_<arch> ” as a
temporary directory for compiling. Additionally, anything downloaded by the
toolchain, target or package steps will be placed in the ”dl” directory.

• build_<arch>

• dl

Building OpenWrt

While the OpenWrt build environment was intended mostly for developers, it
also has to be simple enough that an inexperienced end user can easily build his
or her own customized firmware.

Running the command ”make menuconfig” will bring up OpenWrt’s configu-
ration menu screen, through this menu you can select which platform you’re
targeting, which versions of the toolchain you want to use to build and what
packages you want to install into the firmware image. Note that it will also
check to make sure you have the basic dependencies for it to run correctly. If
that fails, you will need to install some more tools in your local environment
before you can begin.

Similar to the linux kernel config, almost every option has three choices, y/m/n
which are represented as follows:

• <*> (pressing y)
This will be included in the firmware image

16 CHAPTER 2. DEVELOPMENT ISSUES

• <M> (pressing m)
This will be compiled but not included (for later install)

• < > (pressing n)
This will not be compiled

After you’ve finished with the menu configuration, exit and when prompted,
save your configuration changes.

If you want, you can also modify the kernel config for the selected target sys-
tem. simply run ”make kernel_menuconfig” and the build system will unpack
the kernel sources (if necessary), run menuconfig inside of the kernel tree, and
then copy the kernel config to target/linux/<platform> /config so that it is
preserved over ”make clean” calls.

To begin compiling the firmware, type ”make”. By default OpenWrt will only
display a high level overview of the compile process and not each individual
command.

Example:

make[2] toolchain/install
make[3] -C toolchain install
make[2] target/compile
make[3] -C target compile
make[4] -C target/utils prepare

[...]

This makes it easier to monitor which step it’s actually compiling and reduces
the amount of noise caused by the compile output. To see the full output, run
the command ”make V=99”.

During the build process, buildroot will download all sources to the ”dl” di-
rectory and will start patching and compiling them in the ”build_<arch> ”
directory. When finished, the resulting firmware will be in the ”bin” directory
and packages will be in the ”bin/packages” directory.

2.1.2 Creating packages

One of the things that we’ve attempted to do with OpenWrt’s template system
is make it incredibly easy to port software to OpenWrt. If you look at a typical
package directory in OpenWrt you’ll find two things:

• package/<name> /Makefile

• package/<name> /patches

• package/<name> /files

2.1. THE BUILD SYSTEM 17

The patches directory is optional and typically contains bug fixes or optimiza-
tions to reduce the size of the executable. The package makefile is the important
item, provides the steps actually needed to download and compile the package.

The files directory is also optional and typicall contains package specific startup
scripts or default configuration files that can be used out of the box with Open-
Wrt.

Looking at one of the package makefiles, you’d hardly recognize it as a makefile.
Through what can only be described as blatant disregard and abuse of the tra-
ditional make format, the makefile has been transformed into an object oriented
template which simplifies the entire ordeal.

Here for example, is package/bridge/Makefile:

1 #
2 # Copyright (C) 2006 OpenWrt.org
3 #
4 # This is free software, licensed under the GNU General Public License v2.
5 # See /LICENSE for more information.
6 #
7 # $Id: Makefile 5624 2006-11-23 00:29:07Z nbd $
8

9 include $(TOPDIR)/rules.mk
10

11 PKG_NAME:=bridge
12 PKG_VERSION:=1.0.6
13 PKG_RELEASE:=1
14

15 PKG_SOURCE:=bridge-utils-$(PKG_VERSION).tar.gz
16 PKG_SOURCE_URL:=@SF/bridge
17 PKG_MD5SUM:=9b7dc52656f5cbec846a7ba3299f73bd
18 PKG_CAT:=zcat
19

20 PKG_BUILD_DIR:=$(BUILD_DIR)/bridge-utils-$(PKG_VERSION)
21

22 include $(INCLUDE_DIR)/package.mk
23

24 define Package/bridge
25 SECTION:=net
26 CATEGORY:=Base system
27 TITLE:=Ethernet bridging configuration utility
28 DESCRIPTION:=\
29 Manage ethernet bridging: a way to connect networks together to \\\
30 form a larger network.
31 URL:=http://bridge.sourceforge.net/
32 endef
33

34 define Build/Configure
35 $(call Build/Configure/Default, \
36 --with-linux-headers="$(LINUX_DIR)" \

18 CHAPTER 2. DEVELOPMENT ISSUES

37)
38 endef
39

40 define Package/bridge/install
41 $(INSTALL_DIR) $(1)/usr/sbin
42 $(INSTALL_BIN) $(PKG_BUILD_DIR)/brctl/brctl $(1)/usr/sbin/
43 endef
44

45 $(eval $(call BuildPackage,bridge))

As you can see, there’s not much work to be done; everything is hidden in other
makefiles and abstracted to the point where you only need to specify a few
variables.

• PKG_NAME
The name of the package, as seen via menuconfig and ipkg

• PKG_VERSION
The upstream version number that we are downloading

• PKG_RELEASE
The version of this package Makefile

• PKG_SOURCE
The filename of the original sources

• PKG_SOURCE_URL
Where to download the sources from (no trailing slash), you can add
multiple download sources by separating them with a
and a carriage return.

• PKG_MD5SUM
A checksum to validate the download

• PKG_CAT
How to decompress the sources (zcat, bzcat, unzip)

• PKG_BUILD_DIR
Where to compile the package

The PKG_* variables define where to download the package from; @SF is a special
keyword for downloading packages from sourceforge. There is also another key-
word of @GNU for grabbing GNU source releases. If any of the above mentionned
download source fails, the OpenWrt mirrors will be used as source.

The md5sum (if present) is used to verify the package was downloaded correctly
and PKG_BUILD_DIR defines where to find the package after the sources are
uncompressed into $(BUILD_DIR).

At the bottom of the file is where the real magic happens, ”BuildPackage” is a
macro set up by the earlier include statements. BuildPackage only takes one
argument directly – the name of the package to be built, in this case ”bridge”.

2.1. THE BUILD SYSTEM 19

All other information is taken from the define blocks. This is a way of providing
a level of verbosity, it’s inherently clear what the contents of the description
template in Package/bridge is, which wouldn’t be the case if we passed this
information directly as the Nth argument to BuildPackage.

BuildPackage uses the following defines:

Package/<name>:
<name> matches the argument passed to buildroot, this describes the package
the menuconfig and ipkg entries. Within Package/<name> you can define the
following variables:

• SECTION
The type of package (currently unused)

• CATEGORY
Which menu it appears in menuconfig: Network, Sound, Utilities, Multi-
media ...

• TITLE
A short description of the package

• URL
Where to find the original software

• MAINTAINER (optional)
Who to contact concerning the package

• DEPENDS (optional)
Which packages must be built/installed before this package. To reference
a dependency defined in the same Makefile, use <dependency name>. If
defined as an external package, use +<dependency name>. For a kernel
version dependency use: @LINUX 2 <minor version>

Package/<name>/conffiles (optional):
A list of config files installed by this package, one file per line.

Build/Prepare (optional):
A set of commands to unpack and patch the sources. You may safely leave this
undefined.

Build/Configure (optional):
You can leave this undefined if the source doesn’t use configure or has a normal
config script, otherwise you can put your own commands here or use ”$(call
Build/Configure/Default,<first list of arguments, second list>)”as
above to pass in additional arguments for a standard configure script. The first
list of arguments will be passed to the configure script like that: -arg 1 -arg
2. The second list contains arguments that should be defined before running
the configure script such as autoconf or compiler specific variables.

To make it easier to modify the configure command line, you can either extend
or completely override the following variables:

20 CHAPTER 2. DEVELOPMENT ISSUES

• CONFIGURE_ARGS
Contains all command line arguments (format: -arg 1 -arg 2)

• CONFIGURE_VARS
Contains all environment variables that are passed to ./configure (format:
NAME="value")

Build/Compile (optional):
How to compile the source; in most cases you should leave this undefined.

As with Build/Configure there are two variables that allow you to override
the make command line environment variables and flags:

• MAKE_FLAGS
Contains all command line arguments (typically variable overrides like
NAME="value"

• MAKE_VARS
Contains all environment variables that are passed to the make command

Package/<name>/install:
A set of commands to copy files out of the compiled source and into the ipkg
which is represented by the $(1) directory. Note that there are currently 4
defined install macros:

• INSTALL_DIR
install -d -m0755

• INSTALL_BIN
install -m0755

• INSTALL_DATA
install -m0644

• INSTALL_CONF
install -m0600

The reason that some of the defines are prefixed by ”Package/<name> ” and
others are simply ”Build” is because of the possibility of generating multiple
packages from a single source. OpenWrt works under the assumption of one
source per package Makefile, but you can split that source into as many packages
as desired. Since you only need to compile the sources once, there’s one global
set of ”Build” defines, but you can add as many ”Package/<name>” defines as
you want by adding extra calls to BuildPackage – see the dropbear package for
an example.

After you have created your package/<name> /Makefile, the new package will
automatically show in the menu the next time you run ”make menuconfig” and
if selected will be built automatically the next time ”make” is run.

2.1. THE BUILD SYSTEM 21

2.1.3 Creating kernel modules packages

The OpenWrt distribution makes the distinction between two kind of kernel
modules, those coming along with the mainline kernel, and the others available
as a separate project. We will see later that a common template is used for both
of them.

For kernel modules that are part of the mainline kernel source, the makefiles
are located in package/kernel/modules/*.mk and they appear under the section
”Kernel modules”

For external kernel modules, you can add them to the build system just like if
they were software packages by defining a KernelPackage section in the package
makefile.

Here for instance the Makefile for the I2C subsytem kernel modules :

1 #
2 # Copyright (C) 2006 OpenWrt.org
3 #
4 # This is free software, licensed under the GNU General Public License v2.
5 # See /LICENSE for more information.
6 #
7 # $Id $
8

9 I2CMENU:=I2C Bus
10

11 define KernelPackage/i2c-core
12 TITLE:=I2C support
13 DESCRIPTION:=Kernel modules for i2c support
14 SUBMENU:=$(I2CMENU)
15 KCONFIG:=$(CONFIG_I2C_CORE) \
16 $(CONFIG_I2C_DEV)
17 FILES:=$(MODULES_DIR)/kernel/drivers/i2c/*.$(LINUX_KMOD_SUFFIX)
18 AUTOLOAD:=$(call AutoLoad,50,i2c-core i2c-dev)
19 endef
20 $(eval $(call KernelPackage,i2c-core))

To group kernel modules under a common description in menuconfig, you might
want to define a <description>MENU variable on top of the kernel modules
makefile.

• TITLE
The name of the module as seen via menuconfig

• DESCRIPTION
The description as seen via help in menuconfig

• SUBMENU
The sub menu under which this package will be seen

22 CHAPTER 2. DEVELOPMENT ISSUES

• KCONFIG
Kernel configuration option dependency. For external modules, remove it.

• FILES
Files you want to inlude to this kernel module package, separate with
spaces.

• AUTOLOAD
Modules that will be loaded automatically on boot, the order you write
them is the order they would be loaded.

After you have created your package/kernel/modules/<name>.mk, the new
kernel modules package will automatically show in the menu under ”Kernel
modules” next time you run ”make menuconfig” and if selected will be built
automatically the next time ”make” is run.

2.1.4 Conventions

There are a couple conventions to follow regarding packages:

• files

1. configuration files follow the convention
<name>.conf

2. init files follow the convention
<name>.init

• patches

1. patches are numerically prefixed and named related to what they do

2.1.5 Troubleshooting

If you find your package doesn’t show up in menuconfig, try the following com-
mand to see if you get the correct description:

TOPDIR=$PWD make -C package/<name> DUMP=1 V=99

If you’re just having trouble getting your package to compile, there’s a few
shortcuts you can take. Instead of waiting for make to get to your package, you
can run one of the following:

• make package/<name> -clean V=99

• make package/<name> -install V=99

2.2. EXTRA TOOLS 23

Another nice trick is that if the source directory under build_<arch> is newer
than the package directory, it won’t clobber it by unpacking the sources again.
If you were working on a patch you could simply edit the sources under the
build_<arch> /<source> directory and run the install command above, when
satisfied, copy the patched sources elsewhere and diff them with the unpatched
sources. A warning though - if you go modify anything under package/<name>
it will remove the old sources and unpack a fresh copy.

Other useful targets include:

• make package/<name> -prepare V=99

• make package/<name> -compile V=99

• make package/<name> -configure V=99

2.2 Extra tools

2.2.1 Image Builder

2.2.2 SDK

2.3 Adding platform support

Linux is now one of the most widespread operating system for embedded devices
due to its openess as well as the wide variety of platforms it can run on. Many
manufacturer actually use it in firmware you can find on many devices: DVB-
T decoders, routers, print servers, DVD players ... Most of the time the stock
firmware is not really open to the consumer, even if it uses open source software.

You might be interested in running a Linux based firmware for your router for
various reasons: extending the use of a network protocol (such as IPv6), having
new features, new piece of software inside, or for security reasons. A fully open-
source firmware is de-facto needed for such applications, since you want to be free
to use this or that version of a particular reason, be able to correct a particular
bug. Few manufacturers do ship their routers with a Sample Development Kit,
that would allow you to create your own and custom firmware and most of the
time, when they do, you will most likely not be able to complete the firmware
creation process.

This is one of the reasons why OpenWrt and other firmware exists: providing a
version independent, and tools independent firmware, that can be run on various
platforms, known to be running Linux originaly.

2.3.1 Which Operating System does this device run?

There is a lot of methods to ensure your device is running Linux. Some of them
do need your router to be unscrewed and open, some can be done by probing
the device using its external network interfaces.

24 CHAPTER 2. DEVELOPMENT ISSUES

Operating System fingerprinting and port scanning

A large bunch of tools over the Internet exists in order to let you do OS finger-
printing, we will show here an example using nmap:

nmap -P0 -O <IP address>
Starting Nmap 4.20 (http://insecure.org) at 2007-01-08 11:05 CET
Interesting ports on 192.168.2.1:
Not shown: 1693 closed ports
PORT STATE SERVICE
22/tcp open ssh
23/tcp open telnet
53/tcp open domain
80/tcp open http
MAC Address: 00:13:xx:xx:xx:xx (Cisco-Linksys)
Device type: broadband router
Running: Linksys embedded
OS details: Linksys WRT54GS v4 running OpenWrt w/Linux kernel 2.4.30
Network Distance: 1 hop

nmap is able to report whether your device uses a Linux TCP/IP stack, and if
so, will show you which Linux kernel version is probably runs. This report is
quite reliable and it can make the distinction between BSD and Linux TCP/IP
stacks and others.

Using the same tool, you can also do port scanning and service version discovery.
For instance, the following command will report which IP-based services are
running on the device, and which version of the service is being used:

nmap -P0 -sV <IP address>
Starting Nmap 4.20 (http://insecure.org) at 2007-01-08 11:06 CET
Interesting ports on 192.168.2.1:
Not shown: 1693 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh Dropbear sshd 0.48 (protocol 2.0)
23/tcp open telnet Busybox telnetd
53/tcp open domain ISC Bind dnsmasq-2.35
80/tcp open http OpenWrt BusyBox httpd
MAC Address: 00:13:xx:xx:xx:xx (Cisco-Linksys)
Service Info: Device: WAP

The web server version, if identified, can be determining in knowing the Operat-
ing System. For instance, the BOA web server is typical from devices running
an open-source Unix or Unix-like.

Wireless Communications Fingerprinting

Although this method is not really known and widespread, using a wireless
scanner to discover which OS your router or Access Point run can be used. We

2.3. ADDING PLATFORM SUPPORT 25

do not have a clear example of how this could be achieved, but you will have to
monitor raw 802.11 frames and compare them to a very similar device running
a Linux based firmware.

Web server security exploits

The Linksys WRT54G was originally hacked by using a ”ping bug”discovered in
the web interface. This tip has not been fixed for months by Linksys, allowing
people to enable the ”boot wait” helper process via the web interface. Many
web servers used in firmwares are open source web server, thus allowing the
code to be audited to find an exploit. Once you know the web server version
that runs on your device, by using nmap -sV or so, you might be interested in
using exploits to reach shell access on your device.

Native Telnet/SSH access

Some firmwares might have restricted or unrestricted Telnet/SSH access, if so,
try to log in with the web interface login/password and see if you can type
in some commands. This is actually the case for some Broadcom BCM963xx
based firmwares such as the one in Neuf/Cegetel ISP routers, Club-Internet ISP
CI-Box and many others. Some commands, like cat might be left here and be
used to determine the Linux kernel version.

Analysing a binary firmware image

You are very likely to find a firmware binary image on the manufacturer website,
even if your device runs a proprietary operating system. If so, you can download
it and use an hexadecimal editor to find printable words such as vmlinux, linux,
ramdisk, mtd and others.

Some Unix tools like hexdump or strings can be used to analyse the firmware.
Below there is an example with a binary firmware found other the Internet:

hexdump -C <binary image.extension> | less (more)
00000000 46 49 52 45 32 2e 35 2e 30 00 00 00 00 00 00 00 |FIRE2.5.0.......|
00000010 00 00 00 00 31 2e 30 2e 30 00 00 00 00 00 00 00 |....1.0.0.......|
00000020 00 00 00 00 00 00 00 38 00 43 36 29 00 0a e6 dc |.......8.C6)..??|
00000030 54 49 44 45 92 89 54 66 1f 8b 08 08 f8 10 68 42 |TIDE..Tf....?.hB|
00000040 02 03 72 61 6d 64 69 73 6b 00 ec 7d 09 bc d5 d3 |..ramdisk.?}.???|
00000050 da ff f3 9b f7 39 7b ef 73 f6 19 3b 53 67 ea 44 |???.?9{?s?.;Sg?D|

Scroll over the firmware to find printable words that can be significant.

Amount of flash memory

Linux can hardly fit in a 2MB flash device, once you have opened the device and
located the flash chip, try to find its characteristics on the Internet. If your flash

26 CHAPTER 2. DEVELOPMENT ISSUES

chip is a 2MB or less device, your device is most likely to run a proprietary OS
such as WindRiver VxWorks, or a custom manufacturer OS like Zyxel ZynOS.

OpenWrt does not currently run on devices which have 2MB or less of flash
memory. This limitation will probably not be worked around since those devices
are most of the time micro-routers, or Wireless Access Points, which are not the
main OpenWrt target.

Pluging a serial port

By using a serial port and a level shifter, you may reach the console that is
being shown by the device for debugging or flashing purposes. By analysing the
output of this device, you can easily notice if the device uses a Linux kenrel or
something different.

2.3.2 Finding and using the manufacturer SDK

Once you are sure your device run a Linux based firmware, you will be able to
start hacking on it. If the manufacturer respected the GPL, it will have released
a Sample Development Kit with the device.

GPL violations

Some manufacturers do release a Linux based binary firmware, with no sources
at all. The first step before doing anything is to read the license coming with
your device, then write them about this lack of Open Source code. If the manu-
facturer answers you they do not have to release a SDK containing Open Source
software, then we recommend you get in touch with the gpl-violations.org com-
munity.

You will find below a sample letter that can be sent to the manufacturer:

Miss, Mister,

I am using a <device name>, and I cannot find neither on your
website nor on the CD-ROM the open source software used to
build or modify the firmware.

In conformance to the GPL license, you have to release the following
sources:

• complete toolchain that made the kernel and applications
be compiled (gcc, binutils, libc)

• tools to build a custom firmware (mksquashfs, mkcramfs ...)

• kernel sources with patches to make it run on this specific
hardware, this does not include binary drivers

Thank you very much in advance for your answer.

Best regards, <your name>

2.3. ADDING PLATFORM SUPPORT 27

Using the SDK

Once the SDK is available, you are most likely not to be able to build a complete
or functional firmware using it, but parts of it, like only the kernel, or only the
root filesystem. Most manufacturers do not really care releasing a tool that do
work every time you uncompress and use it.

You should anyway be able to use the following components:

• kernel sources with more or less functional patches for your hardware

• binary drivers linked or to be linked with the shipped kernel version

• packages of the toolchain used to compile the whole firmware: gcc, binutils,
libc or uClibc

• binary tools to create a valid firmware image

Your work can be divided into the following tasks:

• create a clean patch of the hardware specific part of the linux kernel

• spot potential kernel GPL violations especially on netfilter and USB stack
stuff

• make the binary drivers work, until there are open source drivers

• use standard a GNU toolchain to make working executables

• understand and write open source tools to generate a valid firmware image

Creating a hardware specific kernel patch

Most of the time, the kernel source that comes along with the SDK is not really
clean, and is not a standard Linux version, it also has architecture specific fixes
backported from the CVS or the git repository of the kernel development trees.
Anyway, some parts can be easily isolated and used as a good start to make a
vanilla kernel work your hardware.

Some directories are very likely to have local modifications needed to make your
hardware be recognized and used under Linux. First of all, you need to find
out the linux kernel version that is used by your hardware, this can be found by
editing the linux/Makefile file.

head -5 linux-2.x.x/Makefile
VERSION = 2
PATCHLEVEL = x
SUBLEVEL = y
EXTRAVERSION = z
NAME=A fancy name

28 CHAPTER 2. DEVELOPMENT ISSUES

So now, you know that you have to download a standard kernel tarball at
kernel.org that matches the version being used by your hardware.

Then you can create a diff file between the two trees, especially for the following
directories:

diff -urN linux-2.x.x/arch/<sub architecture> linux-2.x.x-modified/arch/<sub architecture> > 01-architecture.patch
diff -urN linux-2.x.x/include/ linux-2.x.x-modified/include > 02-includes.patch
diff -urN linux-2.x.x/drivers/ linux-2.x.x-modified/drivers > 03-drivers.patch

This will constitute a basic set of three patches that are very likely to contain
any needed modifications that has been made to the stock Linux kernel to run
on your specific device. Of course, the content produced by the diff -urN may
not always be relevant, so that you have to clean up those patches to only let
the ”must have” code into them.

The fist patch will contain all the code that is needed by the board to be
initialized at startup, as well as processor detection and other boot time specific
fixes.

The second patch will contain all useful definitions for that board: adresses,
kernel granularity, redefinitions, processor family and features ...

The third patch may contain drivers for: serial console, ethernet NIC, wireless
NIC, USB NIC ... Most of the time this patch contains nothing else than ”glue”
code that has been added to make the binary driver work with the Linux kernel.
This code might not be useful if you plan on writing drivers from scratch for
this hardware.

Using the device bootloader

The bootloader is the first program that is started right after your device has
been powered on. This program, can be more or less sophisticated, some do let
you do network booting, USB mass storage booting ... The bootloader is device
and architeture specific, some bootloaders were designed to be universal such
as RedBoot or U-Boot so that you can meet those loaders on totally different
platforms and expect them to behave the same way.

If your device runs a proprietary operating system, you are very likely to deal
with a proprietary boot loader as well. This may not always be a limitation,
some proprietary bootloaders can even have source code available (i.e : Broad-
com CFE).

According to the bootloader features, hacking on the device will be more or
less easier. It is very probable that the bootloader, even exotic and rare, has
a documentation somewhere over the Internet. In order to know what will be
possible with your bootloader and the way you are going to hack the device,
look over the following features :

• does the bootloader allow net booting via bootp/DHCP/NFS or tftp

• does the bootloader accept loading ELF binaries ?

2.3. ADDING PLATFORM SUPPORT 29

• does the bootloader have a kernel/firmware size limitation ?

• does the bootloader expect a firmware format to be loaded with ?

• are the loaded files executed from RAM or flash ?

Net booting is something very convenient, because you will only have to set
up network booting servers on your development station, and keep the original
firmware on the device till you are sure you can replace it. This also prevents
your device from being flashed, and potentially bricked every time you want to
test a modification on the kernel/filesystem.

If your device needs to be flashed every time you load a firmware, the bootlader
might only accept a specific firmware format to be loaded, so that you will have
to understand the firmware format as well.

Making binary drivers work

As we have explained before, manufacturers do release binary drivers in their
GPL tarball. When those drivers are statically linked into the kernel, they
become GPL as well, fortunately or unfortunately, most of the drivers are not
statically linked. This anyway lets you a chance to dynamically link the driver
with the current kernel version, and try to make them work together.

This is one of the most tricky and grey part of the fully open source projects.
Some drivers require few modifications to be working with your custom kernel,
because they worked with an earlier kernel, and few modifications have been
made to the kernel in-between those versions. This is for instance the case with
the binary driver of the Broadcom BCM43xx Wireless Chipsets, where only few
differences were made to the network interface structures.

Some general principles can be applied no matter which kernel version is used
in order to make binary drivers work with your custom kernel:

• turn on kernel debugging features such as:

– CONFIG DEBUG KERNEL
– CONFIG DETECT SOFTLOCKUP
– CONFIG DEBUG KOBJECT
– CONFIG KALLSYMS
– CONFIG KALLSYMS ALL

• link binary drivers when possible to the current kernel version

• try to load those binary drivers

• catch the lockups and understand them

Most of the time, loading binary drivers will fail, and generate a kernel oops.
You can know the last symbol the binary drivers attempted to use, and see in
the kernel headers file, if you do not have to move some structures field before
or after that symbol in order to keep compatibily with both the binary driver
and the stock kernel drivers.

30 CHAPTER 2. DEVELOPMENT ISSUES

Understanding the firmware format

You might want to understand the firmware format, even if you are not yet
capable of running a custom firmware on your device, because this is sometimes
a blocking part of the flashing process.

A firmare format is most of the time composed of the following fields:

• header, containing a firmare version and additional fields: Vendor, Hard-
ware version ...

• CRC32 checksum on either the whole file or just part of it

• Binary and/or compressed kernel image

• Binary and/or compressed root filesystem image

• potential garbage

Once you have figured out how the firmware format is partitioned, you will
have to write your own tool that produces valid firmare binaries. One thing to
be very careful here is the endianness of either the machine that produces the
binary firmware and the device that will be flashed using this binary firmware.

Writing a flash map driver

The flash map driver has an important role in making your custom firmware
work because it is responsible of mapping the correct flash regions and associated
rights to specific parts of the system such as: bootloader, kernel, user filesystem.

Writing your own flash map driver is not really a hard task once you know how
your firmware image and flash is structured. You will find below a commented
example that covers the case of the device where the bootloader can pass to the
kernel its partition plan.

First of all, you need to make your flash map driver be visible in the kernel config-
uration options, this can be done by editing the file linux/drivers/mtd/maps/Kconfig:

config MTD_DEVICE_FLASH
tristate "Device Flash device"
depends on ARCHITECTURE && DEVICE
help
Flash memory access on DEVICE boards. Currently only works with
Bootloader Foo and Bootloader Bar.

Then add your source file to the linux/drivers/mtd/maps/Makefile, so that
it will be compiled along with the kernel.

obj-\$(CONFIG_MTD_DEVICE_FLASH) += device-flash.o

2.3. ADDING PLATFORM SUPPORT 31

You can then write the kernel driver itself, by creating a linux/drivers/mtd/maps/device-
flash.c C source file.

// Includes that are required for the flash map driver to know of the prototypes:
#include <asm/io.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/vmalloc.h>

// Put some flash map definitions here:
#define WINDOW_ADDR 0x1FC00000 /* Real address of the flash */
#define WINDOW_SIZE 0x400000 /* Size of flash */
#define BUSWIDTH 2 /* Buswidth */

static void __exit device_mtd_cleanup(void);

static struct mtd_info *device_mtd_info;

static struct map_info devicd_map = {
.name = "device",
.size = WINDOW_SIZE,
.bankwidth = BUSWIDTH,
.phys = WINDOW_ADDR,

};

static int __init device_mtd_init(void)
{
// Display that we found a flash map device

printk("device: 0x\%08x at 0x\%08x\n", WINDOW_SIZE, WINDOW_ADDR);
// Remap the device address to a kernel address

device_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE);

// If impossible to remap, exit with the EIO error
if (!device_map.virt) {

printk("device: Failed to ioremap\n");
return -EIO;

}

// Initlialise the device map
simple_map_init(&device_map);

/* MTD informations are closely linked to the flash map device
you might also use "jedec_probe" "amd_probe" or "intel_probe" */
device_mtd_info = do_map_probe("cfi_probe", &device_map);

if (device_mtd_info) {
device_mtd_info->owner = THIS_MODULE;

32 CHAPTER 2. DEVELOPMENT ISSUES

int parsed_nr_parts = 0;

// We try here to use the partition schema provided by the bootloader specific code
if (parsed_nr_parts == 0) {

int ret = parse_bootloader_partitions(device_mtd_info, &parsed_parts, 0);
if (ret > 0) {

part_type = "BootLoader";
parsed_nr_parts = ret;

}
}

add_mtd_partitions(devicd_mtd_info, parsed_parts, parsed_nr_parts);

return 0;
}

iounmap(device_map.virt);

return -ENXIO;
}

// This function will make the driver clean up the MTD device mapping
static void __exit device_mtd_cleanup(void)
{
// If we found a MTD device before

if (device_mtd_info) {
// Delete every partitions

del_mtd_partitions(device_mtd_info);
// Delete the associated map

map_destroy(device_mtd_info);
}

// If the virtual address is already in use
if (device_map.virt) {

// Unmap the physical address to a kernel space address
iounmap(device_map.virt);

// Reset the structure field
device_map.virt = 0;

}
}

// Macros that indicate which function is called on loading/unloading the module
module_init(device_mtd_init);
module_exit(device_mtd_cleanup);

// Macros defining licence and author, parameters can be defined here too.
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Me, myself and I <memyselfandi@domain.tld");

2.4. DEBUGGING AND DEBRICKING 33

2.4 Debugging and debricking

2.4.1 Adding a serial port

2.4.2 JTAG

2.5 Reporting bugs

2.5.1 Using the Trac ticket system

OpenWrt as an open source software opens its development to the community
by having a publicly browseable subversion repository. The Trac software which
comes along with a Subversion frontend, a Wiki and a ticket reporting system
is used as an interface between developers, users and contributors in order to
make the whole development process much easier and efficient.

We make distinction between two kinds of people within the Trac system:

• developers, able to report, close and fix tickets

• reporters, able to add a comment, patch, or request ticket status

Opening a ticket

A reporter might want to open a ticket for the following reasons:

• a bug affects a specific hardware and/or software and needs to be fixed

• a specific software package would be seen as part of the official OpenWrt
repository

• a feature should be added or removed from OpenWrt

Regarding the kind of ticket that is open, a patch is welcome in those cases:

• new package to be included in OpenWrt

• fix for a bug that works for the reporter and has no known side effect

• new features that can be added by modifying existing OpenWrt files

Once the ticket is open, a developer will take care of it, if so, the ticket is marked
as ”accepted” with the developer name. You can add comments at any time to
the ticket, even when it is closed.

34 CHAPTER 2. DEVELOPMENT ISSUES

Submitting patches

In order to include a patch to a ticket, you need to output it, this can be done
by using the svn diff command which generates the differences between your
local copy (modified) and the version on the OpenWrt repository (unmodified
yet). Then attach the patch with a description, using the ”Attach” button.

Your patch must respect the following conventions :

• it has to work, with no side effect on other platforms, distributions, pack-
ages ...

• it must have a reason to be included in OpenWrt : bug fix, enhancement,
feature adding/removing

• the patch name should be named like that : <index number>-this fixes bug foo and bar.patch

• if several, they have to be indexed with an integer number : 100-patch1,
200-patch2 ...

Your patch will be read and most likely be used as-is by the developpers if it is
clean and working. If not, the patch will be accepted anyway and modified to
be OpenWrt-rules compliant

Closing a ticket

A ticket might be closed by a developer because:

• the problem is already fixed (wontfix)

• the problem described is not judged as valid, and comes along with an
explanation why (invalid)

• the developers know that this bug will be fixed upstream (wontfix)

• the problem is very similar to something that has already been reported
(duplicate)

• the problem cannot be reproduced by the developers (worksforme)

A the same time, the reporter may want to get the ticket closed since he is not
longer able to trigger the bug, or found it invalid by himself.

When a ticket is closed by a developer and marked as ”fixed”, the comment
contains the subversion changeset which corrects the bug.

	The Router
	Getting started
	Installation
	Initial configuration
	Failsafe mode

	Configuring OpenWrt
	Network
	Wireless

	Advanced configuration
	Hotplug
	Init scripts
	Network scripts

	Development issues
	The build system
	Building an image
	Creating packages
	Creating kernel modules packages
	Conventions
	Troubleshooting

	Extra tools
	Image Builder
	SDK

	Adding platform support
	Which Operating System does this device run?
	Finding and using the manufacturer SDK

	Debugging and debricking
	Adding a serial port
	JTAG

	Reporting bugs
	Using the Trac ticket system

