
Contents

1 The Router 3

1.1 Getting started . 3

1.1.1 Installation . 3

1.1.2 Initial configuration . 3

1.1.3 Failsafe mode . 3

1.2 Configuring OpenWrt . 3

1.2.1 Network . 3

1.2.2 Wireless . 6

1.3 Advanced configuration . 15

1.3.1 Hotplug . 16

1.3.2 Init scripts . 16

1.3.3 Network scripts . 18

2 Development issues 19

2.1 The build system . 19

2.1.1 Building an image . 19

2.1.2 Creating packages . 22

2.1.3 Creating kernel modules packages 27

2.1.4 Conventions . 28

2.1.5 Troubleshooting . 28

2.1.6 Using build environments 29

2.2 Extra tools . 30

2.2.1 Image Builder . 30

2.2.2 SDK . 30

2.3 Adding platform support . 30

2.3.1 Which Operating System does this device run? 31

1

2 CONTENTS

2.3.2 Finding and using the manufacturer SDK 33

2.4 Debugging and debricking . 40

2.4.1 Adding a serial port . 40

2.4.2 JTAG . 40

2.5 Reporting bugs . 40

2.5.1 Using the Trac ticket system 40

2.6 Submitting patches . 41

2.6.1 How to contribute . 41

2.6.2 Where to listen and talk 42

2.6.3 Patch Submission Process 42

Chapter 1

The Router

1.1 Getting started

1.1.1 Installation

1.1.2 Initial configuration

1.1.3 Failsafe mode

1.2 Configuring OpenWrt

1.2.1 Network

The network configuration in Kamikaze is stored in /etc/config/network and
is divided into interface configurations. Each interface configuration either refers
directly to an ethernet/wifi interface (eth0, wl0, ..) or to a bridge containing
multiple interfaces. It looks like this:

config interface "lan"
option ifname "eth0"
option proto "static"
option ipaddr "192.168.1.1"
option netmask "255.255.255.0"
option gateway "192.168.1.254"
option dns "192.168.1.254"

ifname specifies the Linux interface name. If you want to use bridging on one
or more interfaces, set ifname to a list of interfaces and add:

option type "bridge"

3

4 CHAPTER 1. THE ROUTER

It is possible to use VLAN tagging on an interface simply by adding the VLAN
IDs to it, e.g. eth0.1. These can be nested as well.

This sets up a simple static configuration for eth0. proto specifies the protocol
used for the interface. The default image usually provides ’none’ ’static’,
’dhcp’ and ’pppoe’. Others can be added by installing additional packages.

When using the ’static’ method like in the example, the options ipaddr and
netmask are mandatory, while gateway and dns are optional. You can specify
more than one DNS server, separated with spaces.

DHCP currently only accepts ipaddr (IP address to request from the server)
and hostname (client hostname identify as) - both are optional.

PPP based protocols (pppoe, pptp, ...) accept these options:

• username
The PPP username (usually with PAP authentication)

• password
The PPP password

• keepalive
Ping the PPP server (using LCP). The value of this option specifies the
maximum number of failed pings before reconnecting. The ping inter-
val defaults to 5, but can be changed by appending ”,<interval>” to the
keepalive value

• demand
Use Dial on Demand (value specifies the maximum idle time.

• server: (pptp)
The remote pptp server IP

For all protocol types, you can also specify the MTU by using the mtu option.

Setting up static routes

You can set up static routes for a specific interface that will be brought up after
the interface is configured.

Simply add a config section like this:

config route foo
option interface lan
option target 1.1.1.0
option netmask 255.255.255.0
option gateway 192.168.1.1

The name for the route section is optional, the interface, target and gateway
options are mandatory. Leaving out the netmask option will turn the route into
a host route.

1.2. CONFIGURING OPENWRT 5

Setting up the switch (currently broadcom only)

The switch configuration is set by adding a ’switch’ config section. Example:

config switch "eth0"
option vlan0 "1 2 3 4 5*"
option vlan1 "0 5"

On Broadcom hardware the section name needs to be eth0, as the switch driver
does not detect the switch on any other physical device. Every vlan option
needs to have the name vlan<n> where <n> is the VLAN number as used in
the switch driver. As value it takes a list of ports with these optional suffixes:

• ’*’: Set the default VLAN (PVID) of the Port to the current VLAN

• ’u’: Force the port to be untagged

• ’t’: Force the port to be tagged

The CPU port defaults to tagged, all other ports to untagged. On Broadcom
hardware the CPU port is always 5. The other ports may vary with different
hardware.

For instance, if you wish to have 3 vlans, like one 3-port switch, 1 port in a
DMZ, and another one as your WAN interface, use the following configuration :

config switch "eth0"
option vlan0 "1 2 3 5*"
option vlan1 "0 5"
option vlan2 "4 5"

Three interfaces will be automatically created using this switch layout : eth0.0
(vlan0), eth0.1 (vlan1) and eth0.2 (vlan2). You can then assign those inter-
faces to a custom network configuration name like lan, wan or dmz for instance.

Setting up IPv6 connectivity

OpenWrt supports IPv6 connectivity using PPP, Tunnel brokers or static as-
signment.

If you use PPP, IPv6 will be setup using IP6CP and there is nothing to configure.

To setup an IPv6 tunnel to a tunnel broker, you can install the 6scripts package
and edit the /etc/config/6tunnel file and change the settings accordingly :

config 6tunnel
option tnlifname ’sixbone’
option remoteip4 ’1.0.0.1’
option localip4 ’1.0.0.2’
option localip6 ’2001::DEAD::BEEF::1’
option prefix ’/64’

6 CHAPTER 1. THE ROUTER

• ’tnlifname’: Set the interface name of the IPv6 in IPv4 tunnel

• ’remoteip4’: IP address of the remote end to establish the 6in4 tunnel.
This address is given by the tunnel broker

• ’localip4’: IP address of your router to establish the 6in4 tunnel. It
will usually match your WAN IP address.

• ’localip6’: IPv6 address to setup on your tunnel side This address is
given by the tunnel broker

• ’prefix’: IPv6 prefix to setup on the LAN.

Using the same package you can also setup an IPv6 bridged connection :

config 6bridge
option bridge ’br6’

By default the script bridges the WAN interface with the LAN interface and
uses ebtables to filter anything that is not IPv6 on the bridge.

IPv6 static addressing is also supported using a similar setup as IPv4 but with
the ip6 prefixing (when applicable).

config interface "lan"
option ifname "eth0"
option proto "static"
option ip6addr "fe80::200:ff:fe00:0/64"
option ip6gw "2001::DEAF:BEE:1"

1.2.2 Wireless

The WiFi settings are configured in the file /etc/config/wireless (currently
supported on Broadcom, Atheros and mac80211). When booting the router
for the first time it should detect your card and create a sample configuration
file. By default ’option network lan’ is commented. This prevents unsecured
sharing of the network over the wireless interface.

Each wireless driver has its own configuration script in /lib/wifi/driver_name.sh
which handles driver specific options and configurations. This script is also call-
ing driver specific binaries like wlc for Broadcom, or hostapd and wpa supplicant
for atheros.

The reason for using such architecture, is that it abstracts the driver configura-
tion.

1.2. CONFIGURING OPENWRT 7

Generic Broadcom wireless config:

config wifi-device "wl0"
option type "broadcom"
option channel "5"

config wifi-iface
option device "wl0"

option network lan
option mode "ap"
option ssid "OpenWrt"
option hidden "0"
option encryption "none"

Generic Atheros wireless config:

config wifi-device "wifi0"
option type "atheros"
option channel "5"
option hwmode "11g"

config wifi-iface
option device "wifi0"

option network lan
option mode "ap"
option ssid "OpenWrt"
option hidden "0"
option encryption "none"

Generic mac80211 wireless config:

config wifi-device "wifi0"
option type "mac80211"
option channel "5"

config wifi-iface
option device "wlan0"

option network lan
option mode "ap"
option ssid "OpenWrt"
option hidden "0"
option encryption "none"

Generic multi-radio Atheros wireless config:

config wifi-device wifi0
option type atheros

8 CHAPTER 1. THE ROUTER

option channel 1

config wifi-iface
option device wifi0

option network lan
option mode ap
option ssid OpenWrt_private
option hidden 0
option encryption none

config wifi-device wifi1
option type atheros
option channel 11

config wifi-iface
option device wifi1

option network lan
option mode ap
option ssid OpenWrt_public
option hidden 1
option encryption none

There are two types of config sections in this file. The ’wifi-device’ refers to
the physical wifi interface and ’wifi-iface’ configures a virtual interface on top
of that (if supported by the driver).

A full outline of the wireless configuration file with description of each field:

config wifi-device wifi device name
option type broadcom, atheros, mac80211
option country us, uk, fr, de, etc.
option channel 1-14
option maxassoc 1-128 (broadcom only)
option distance 1-n
option hwmode 11b, 11g, 11a, 11bg (atheros, mac80211)
option rxantenna 0,1,2 (atheros, broadcom)
option txantenna 0,1,2 (atheros, broadcom)
option txpower transmission power in dBm

config wifi-iface
option network the interface you want wifi to bridge with
option device wifi0, wifi1, wifi2, wifiN
option mode ap, sta, adhoc, monitor, or wds
option txpower (deprecated) transmission power in dBm
option ssid ssid name
option bssid bssid address
option encryption none, wep, psk, psk2, wpa, wpa2
option key encryption key
option key1 key 1
option key2 key 2

1.2. CONFIGURING OPENWRT 9

option key3 key 3
option key4 key 4
option server ip address
option port port
option hidden 0,1
option isolate 0,1

Options for the wifi-device:

• type
The driver to use for this interface.

• country
The country code used to determine the regulatory settings.

• channel
The wifi channel (e.g. 1-14, depending on your country setting).

• maxassoc
Optional: Maximum number of associated clients. This feature is sup-
ported only on the broadcom chipset.

• distance
Optional: Distance between the ap and the furthest client in meters. This
feature is supported only on the atheros chipset.

• mode
The frequency band (b, g, bg, a). This feature is only supported on the
atheros chipset.

• diversity
Optional: Enable diversity for the Wi-Fi device. This feature is supported
only on the atheros chipset.

• rxantenna
Optional: Antenna identifier (0, 1 or 2) for reception. This feature is
supported by atheros and some broadcom chipsets.

• txantenna
Optional: Antenna identifier (0, 1 or 2) for emission. This feature is
supported by atheros and some broadcom chipsets.

• txpower Set the transmission power to be used. The amount is specified
in dBm.

Options for the wifi-iface:

• network
Selects the interface section from /etc/config/network to be used with
this interface

10 CHAPTER 1. THE ROUTER

• device
Set the wifi device name.

• mode
Operating mode:

– ap
Access point mode

– sta
Client mode

– adhoc
Ad-Hoc mode

– monitor
Monitor mode

– wds
WDS point-to-point link

• ssid Set the SSID to be used on the wifi device.

• bssid Set the BSSID address to be used for wds to set the mac address
of the other wds unit.

• txpower (Deprecated, set in wifi-device) Set the transmission power to be
used. The amount is specified in dBm.

• encryption
Encryption setting. Accepts the following values:

– none

– wep

– psk, psk2
WPA(2) Pre-shared Key

– wpa, wpa2
WPA(2) RADIUS

• key, key1, key2, key3, key4 (wep, wpa and psk)
WEP key, WPA key (PSK mode) or the RADIUS shared secret (WPA
RADIUS mode)

• server (wpa)
The RADIUS server ip address

• port (wpa)
The RADIUS server port (defaults to 1812)

• hidden
0 broadcasts the ssid; 1 disables broadcasting of the ssid

• isolate
Optional: Isolation is a mode usually set on hotspots that limits the clients
to communicate only with the AP and not with other wireless clients. 0
disables ap isolation (default); 1 enables ap isolation.

1.2. CONFIGURING OPENWRT 11

Wireless Distribution System WDS is a non-standard mode which will be
working between two Broadcom devices for instance but not between a Broad-
com and Atheros device.

Unencrypted WDS connections This configuration example shows you
how to setup unencrypted WDS connections. We assume that the peer config-
ured as below as the BSSID ca:fe:ba:be:00:01 and the remote WDS endpoint
ca:fe:ba:be:00:02 (option bssid field).

config wifi-device "wl0"
option type "broadcom"
option channel "5"

config wifi-iface
option device "wl0"
option network lan
option mode "ap"
option ssid "OpenWrt"
option hidden "0"
option encryption "none"

config wifi-iface
option device "wl0"
option network lan
option mode wds
option ssid "OpenWrt WDS"
option bssid "ca:fe:ba:be:00:02"

Encrypted WDS connections It is also possible to encrypt WDS connec-
tions. psk, psk2 and psk+psk2 modes are supported. Configuration below is
an example configuration using Pre-Shared-Keys with AES algorithm.

config wifi-device wl0
option type broadcom
option channel 5

config wifi-iface
option device "wl0"
option network lan
option mode ap
option ssid "OpenWrt"
option encryption psk2
option key "<key for clients>"

config wifi-iface
option device "wl0"
option network lan
option mode wds

12 CHAPTER 1. THE ROUTER

option bssid ca:fe:ba:be:00:02
option ssid "OpenWrt WDS"
option encryption psk2
option key "<psk for WDS>"

802.1x configurations OpenWrt supports both 802.1x client and Access
Point configurations. 802.1x client is only working with Atheros or mac80211
drivers. Configuration only supports EAP types TLS, TTLS or PEAP.

EAP-TLS

config wifi-iface
option device "ath0"
option network lan
option ssid OpenWrt
option eap_type tls
option ca_cert "/etc/config/certs/ca.crt"
option priv_key "/etc/config/certs/priv.crt"
option priv_key_pwd "PKCS#12 passphrase"

EAP-PEAP

config wifi-iface
option device "ath0"
option network lan
option ssid OpenWrt
option eap_type peap
option ca_cert "/etc/config/certs/ca.crt"
option auth MSCHAPV2
option identity username
option password password

Limitations: There are certain limitations when combining modes. Only the
following mode combinations are supported:

• Broadcom:

– 1x sta, 0-3x ap

– 1-4x ap

– 1x adhoc

– 1x monitor

WDS links can only be used in pure AP mode and cannot use WEP
(except when sharing the settings with the master interface, which is done
automatically).

1.2. CONFIGURING OPENWRT 13

• Atheros:

– 1x sta, 0-Nx ap

– 1-Nx ap

– 1x adhoc

N is the maximum number of VAPs that the module allows, it defaults
to 4, but can be changed by loading the module with the maxvaps=N
parameter.

Adding a new driver configuration Since we currently only support thread
different wireless drivers : Broadcom, Atheros and mac80211, you might be in-
terested in adding support for another driver like Ralink RT2x00, Texas Instru-
ments ACX100/111.

The driver specific script should be placed in /lib/wifi/<driver>.sh and has
to include several functions providing :

• detection of the driver presence

• enabling/disabling the wifi interface(s)

• configuration reading and setting

• third-party programs calling (nas, supplicant)

Each driver script should append the driver to a global DRIVERS variable :

append DRIVERS "driver name"

scan_<driver> This function will parse the /etc/config/wireless and make
sure there are no configuration incompatibilities, like enabling hidden SSIDS
with ad-hoc mode for instance. This can be more complex if your driver supports
a lof of configuration options. It does not change the state of the interface.

Example:

scan_dummy() {
local device="$1"

config_get vifs "$device" vifs
for vif in $vifs; do

check config consistency for wifi-iface sections
done
check mode combination

}

14 CHAPTER 1. THE ROUTER

enable_<driver> This function will bring up the wifi device and optionally
create application specific configuration files, e.g. for the WPA authenticator or
supplicant.

Example:

enable_dummy() {
local device="$1"

config_get vifs "$device" vifs
for vif in $vifs; do

bring up virtual interface belonging to
the wifi-device "$device"

done
}

disable_<driver> This function will bring down the wifi device and all its
virtual interfaces (if supported).

Example:

disable_dummy() {
local device="$1"

bring down virtual interfaces belonging to
"$device" regardless of whether they are
configured or not. Don’t rely on the vifs
variable at this point

}

detect_<driver> This function looks for interfaces that are usable with the
driver. Template config sections for new devices should be written to stdout.
Must check for already existing config sections belonging to the interfaces before
creating new templates.

Example:

detect_dummy() {
[wifi-device = "$(config_get dummydev type)"] && return 0
cat <<EOF

config wifi-device dummydev
option type dummy
REMOVE THIS LINE TO ENABLE WIFI:
option disabled 1

config wifi-iface
option device dummydev
option mode ap
option ssid OpenWrt

EOF
}

1.3. ADVANCED CONFIGURATION 15

1.3 Advanced configuration

Structure of the configuration files

The config files are divided into sections and options/values.

Every section has a type, but does not necessarily have a name. Every option
has a name and a value and is assigned to the section it was written under.

Syntax:

config <type> ["<name>"] # Section
option <name> "<value>" # Option

Every parameter needs to be a single string and is formatted exactly like a
parameter for a shell function. The same rules for Quoting and special characters
also apply, as it is parsed by the shell.

Parsing configuration files in custom scripts

To be able to load configuration files, you need to include the common functions
with:

. /etc/functions.sh

Then you can use config_load <name> to load config files. The function
first checks for <name> as absolute filename and falls back to loading it from
/etc/config (which is the most common way of using it).

If you want to use special callbacks for sections and/or options, you need to
define the following shell functions before running config_load (after including
/etc/functions.sh):

config_cb() {
local type="$1"
local name="$2"
commands to be run for every section

}

option_cb() {
commands to be run for every option

}

You can also alter option_cb from config_cb based on the section type. This
allows you to process every single config section based on its type individually.

config_cb is run every time a new section starts (before options are being pro-
cessed). You can access the last section through the CONFIG_SECTION variable.

16 CHAPTER 1. THE ROUTER

Also an extra call to config_cb (without a new section) is generated after con-
fig_load is done. That allows you to process sections both before and after all
options were processed.

Another way of iterating on config sections is using the config_foreach com-
mand.

Syntax:

config_foreach <function name> [<sectiontype>] [<arguments...>]

This command will run the supplied function for every single config section in
the currently loaded config. The section name will be passed to the function as
argument 1. If the section type is added to the command line, the function will
only be called for sections of the given type.

You can access already processed options with the config_get command Syn-
tax:

print the value of the option
config_get <section> <option>

store the value inside the variable
config_get <variable> <section> <option>

In busybox ash the three-option config_get is faster, because it does not result
in an extra fork, so it is the preferred way.

Additionally you can also modify or add options to sections by using the con-
fig_set command.

Syntax:

config_set <section> <option> <value>

If a config section is unnamed, an automatically generated name will be assigned
internally, e.g. cfg1, cfg2, ...

While it is possible, using unnamed sections through these autogenerated names
is strongly discouraged. Use callbacks or config_foreach instead.

1.3.1 Hotplug

1.3.2 Init scripts

Because OpenWrt uses its own init script system, all init scripts must be in-
stalled as /etc/init.d/name use /etc/rc.common as a wrapper.

Example: /etc/init.d/httpd

1.3. ADVANCED CONFIGURATION 17

#!/bin/sh /etc/rc.common
Copyright (C) 2006 OpenWrt.org

START=50
start() {

[-d /www] && httpd -p 80 -h /www -r OpenWrt
}

stop() {
killall httpd

}

as you can see, the script does not actually parse the command line arguments
itself. This is done by the wrapper script /etc/rc.common.

start() and stop() are the basic functions, which almost any init script should
provide. start() is called when the user runs /etc/init.d/httpd start or (if
the script is enabled and does not override this behavior) at system boot time.

Enabling and disabling init scripts is done by running /etc/init.d/name en-
able or /etc/init.d/name disable. This creates or removes symbolic links
to the init script in /etc/rc.d, which is processed by /etc/init.d/rcS at boot
time.

The order in which these scripts are run is defined in the variable START in the
init script. Changing it requires running /etc/init.d/name enable again.

You can also override these standard init script functions:

• boot()
Commands to be run at boot time. Defaults to start()

• restart()
Restart your service. Defaults to stop(); start()

• reload()
Reload the configuration files for your service. Defaults to restart()

You can also add custom commands by creating the appropriate functions and
referencing them in the EXTRA_COMMANDS variable. Helptext is added in EX-
TRA_HELP.

Example:

status() {
print the status info

}

EXTRA_COMMANDS="status"
EXTRA_HELP=" status Print the status of the service"

18 CHAPTER 1. THE ROUTER

1.3.3 Network scripts

Using the network scripts

To be able to access the network functions, you need to include the necessary
shell scripts by running:

. /etc/functions.sh # common functions
include /lib/network # include /lib/network/*.sh
scan_interfaces # read and parse the network config

Some protocols, such as PPP might change the configured interface names
at run time (e.g. eth0 => ppp0 for PPPoE). That’s why you have to run
scan_interfaces instead of reading the values from the config directly. Af-
ter running scan_interfaces, the ’ifname’ option will always contain the
effective interface name (which is used for IP traffic) and if the physical device
name differs from it, it will be stored in the ’device’ option. That means that
running config_get lan ifname after scan_interfaces might not return the
same result as running it before.

After running scan_interfaces, the following functions are available:

• find_config interface

looks for a network configuration that includes the specified network in-
terface.

• setup_interface interface [config] [protocol]

will set up the specified interface, optionally overriding the network con-
figuration name or the protocol that it uses.

Writing protocol handlers

You can add custom protocol handlers by adding shell scripts to /lib/network.
They provide the following two shell functions:

scan_<protocolname>() {
local config="$1"
change the interface names if necessary

}

setup_interface_<protocolname>() {
local interface="$1"
local config="$2"
set up the interface

}

scan_protocolname is optional and only necessary if your protocol uses a cus-
tom device, e.g. a tunnel or a PPP device.

Chapter 2

Development issues

2.1 The build system

One of the biggest challenges to getting started with embedded devices is that
you cannot just install a copy of Linux and expect to be able to compile a
firmware. Even if you did remember to install a compiler and every development
tool offered, you still would not have the basic set of tools needed to produce
a firmware image. The embedded device represents an entirely new hardware
platform, which is most of the time incompatible with the hardware on your
development machine, so in a process called cross compiling you need to produce
a new compiler capable of generating code for your embedded platform, and then
use it to compile a basic Linux distribution to run on your device.

The process of creating a cross compiler can be tricky, it is not something that is
regularly attempted and so there is a certain amount of mystery and black magic
associated with it. In many cases when you are dealing with embedded devices
you will be provided with a binary copy of a compiler and basic libraries rather
than instructions for creating your own – it is a time saving step but at the same
time often means you will be using a rather dated set of tools. Likewise, it is
also common to be provided with a patched copy of the Linux kernel from the
board or chip vendor, but this is also dated and it can be difficult to spot exactly
what has been modified to make the kernel run on the embedded platform.

2.1.1 Building an image

OpenWrt takes a different approach to building a firmware; downloading, patch-
ing and compiling everything from scratch, including the cross compiler. To put
it in simpler terms, OpenWrt does not contain any executables or even sources,
it is an automated system for downloading the sources, patching them to work
with the given platform and compiling them correctly for that platform. What
this means is that just by changing the template, you can change any step in
the process.

As an example, if a new kernel is released, a simple change to one of the Makefiles
will download the latest kernel, patch it to run on the embedded platform and

19

20 CHAPTER 2. DEVELOPMENT ISSUES

produce a new firmware image – there is no work to be done trying to track down
an unmodified copy of the existing kernel to see what changes had been made,
the patches are already provided and the process ends up almost completely
transparent. This does not just apply to the kernel, but to anything included
with OpenWrt – It is this one simple understated concept which is what allows
OpenWrt to stay on the bleeding edge with the latest compilers, latest kernels
and latest applications.

So let’s take a look at OpenWrt and see how this all works.

Download OpenWrt

This article refers to the ”Kamikaze” branch of OpenWrt, which can be down-
loaded via subversion using the following command:

$ svn checkout svn://svn.openwrt.org/openwrt/trunk kamikaze

Additionally, there is a trac interface on https://dev.openwrt.org/ which can be
used to monitor svn commits and browse the source repository.

The directory structure

There are four key directories in the base:

• tools

• toolchain

• package

• target

tools and toolchain refer to common tools which will be used to build the
firmware image, the compiler, and the C library. The result of this is three
new directories, build_dir/host, which is a temporary directory for building
the target independent tools, build_dir/toolchain-<arch> * which is used for
building the toolchain for a specific architecture, and staging_dir/toolchain-
<arch> * where the resulting toolchain is installed. You will not need to do
anything with the toolchain directory unless you intend to add a new version of
one of the components above.

• build_dir/host

• build_dir/toolchain-<arch> *

package is for exactly that – packages. In an OpenWrt firmware, almost ev-
erything is an .ipk, a software package which can be added to the firmware
to provide new features or removed to save space. Note that packages are also
maintained outside of the main trunk and can be obtained from subversion using
the package feeds system:

https://dev.openwrt.org/

2.1. THE BUILD SYSTEM 21

$./scripts/feeds update

Those packages can be used to extend the functionality of the build system and
need to be symlinked into the main trunk. Once you do that, the packages will
show up in the menu for configuration. From kamikaze you would do something
like this:

$./scripts/feeds search nmap
Search results in feed ’packages’:
nmap Network exploration and/or security auditing utility

$./scripts/feeds install nmap

To include all packages, issue the following command:

$ make package/symlinks

target refers to the embedded platform, this contains items which are specific to
a specific embedded platform. Of particular interest here is the ”target/linux”
directory which is broken down by platform <arch> and contains the patches to
the kernel, profile config, for a particular platform. There’s also the ”target/image”
directory which describes how to package a firmware for a specific platform.

Both the target and package steps will use the directory ”build_dir/<arch> ”
as a temporary directory for compiling. Additionally, anything downloaded by
the toolchain, target or package steps will be placed in the ”dl” directory.

• build_dir/<arch>

• dl

Building OpenWrt

While the OpenWrt build environment was intended mostly for developers, it
also has to be simple enough that an inexperienced end user can easily build his
or her own customized firmware.

Running the command ”make menuconfig” will bring up OpenWrt’s configu-
ration menu screen, through this menu you can select which platform you’re
targeting, which versions of the toolchain you want to use to build and what
packages you want to install into the firmware image. Note that it will also
check to make sure you have the basic dependencies for it to run correctly. If
that fails, you will need to install some more tools in your local environment
before you can begin.

Similar to the linux kernel config, almost every option has three choices, y/m/n
which are represented as follows:

• <*> (pressing y)
This will be included in the firmware image

22 CHAPTER 2. DEVELOPMENT ISSUES

• <M> (pressing m)
This will be compiled but not included (for later install)

• < > (pressing n)
This will not be compiled

After you’ve finished with the menu configuration, exit and when prompted,
save your configuration changes.

If you want, you can also modify the kernel config for the selected target sys-
tem. simply run ”make kernel_menuconfig” and the build system will unpack
the kernel sources (if necessary), run menuconfig inside of the kernel tree, and
then copy the kernel config to target/linux/<platform> /config so that it is
preserved over ”make clean” calls.

To begin compiling the firmware, type ”make”. By default OpenWrt will only
display a high level overview of the compile process and not each individual
command.

Example:

make[2] toolchain/install
make[3] -C toolchain install
make[2] target/compile
make[3] -C target compile
make[4] -C target/utils prepare

[...]

This makes it easier to monitor which step it’s actually compiling and reduces
the amount of noise caused by the compile output. To see the full output, run
the command ”make V=99”.

During the build process, buildroot will download all sources to the ”dl” direc-
tory and will start patching and compiling them in the ”build_dir/<arch> ”
directory. When finished, the resulting firmware will be in the ”bin” directory
and packages will be in the ”bin/packages” directory.

2.1.2 Creating packages

One of the things that we’ve attempted to do with OpenWrt’s template system
is make it incredibly easy to port software to OpenWrt. If you look at a typical
package directory in OpenWrt you’ll find two things:

• package/<name> /Makefile

• package/<name> /patches

• package/<name> /files

2.1. THE BUILD SYSTEM 23

The patches directory is optional and typically contains bug fixes or optimiza-
tions to reduce the size of the executable. The package makefile is the important
item, provides the steps actually needed to download and compile the package.

The files directory is also optional and typicall contains package specific startup
scripts or default configuration files that can be used out of the box with Open-
Wrt.

Looking at one of the package makefiles, you’d hardly recognize it as a makefile.
Through what can only be described as blatant disregard and abuse of the tra-
ditional make format, the makefile has been transformed into an object oriented
template which simplifies the entire ordeal.

Here for example, is package/bridge/Makefile:

1 # $Id: Makefile 5624 2006-11-23 00:29:07Z nbd $
2

3 include $(TOPDIR)/rules.mk
4

5 PKG_NAME:=bridge
6 PKG_VERSION:=1.0.6
7 PKG_RELEASE:=1
8

9 PKG_SOURCE:=bridge-utils-$(PKG_VERSION).tar.gz
10 PKG_SOURCE_URL:=@SF/bridge
11 PKG_MD5SUM:=9b7dc52656f5cbec846a7ba3299f73bd
12 PKG_CAT:=zcat
13

14 PKG_BUILD_DIR:=$(BUILD_DIR)/bridge-utils-$(PKG_VERSION)
15

16 include $(INCLUDE_DIR)/package.mk
17

18 define Package/bridge
19 SECTION:=net
20 CATEGORY:=Base system
21 TITLE:=Ethernet bridging configuration utility
22 URL:=http://bridge.sourceforge.net/
23 endef
24

25 define Package/bridge/description
26 Manage ethernet bridging:
27 a way to connect networks together to form a larger network.
28 endef
29

30 define Build/Configure
31 $(call Build/Configure/Default, \
32 --with-linux-headers="$(LINUX_DIR)" \
33)
34 endef
35

36 define Package/bridge/install

24 CHAPTER 2. DEVELOPMENT ISSUES

37 $(INSTALL_DIR) $(1)/usr/sbin
38 $(INSTALL_BIN) $(PKG_BUILD_DIR)/brctl/brctl $(1)/usr/sbin/
39 endef
40

41 $(eval $(call BuildPackage,bridge))

As you can see, there’s not much work to be done; everything is hidden in other
makefiles and abstracted to the point where you only need to specify a few
variables.

• PKG_NAME
The name of the package, as seen via menuconfig and ipkg

• PKG_VERSION
The upstream version number that we are downloading

• PKG_RELEASE
The version of this package Makefile

• PKG_SOURCE
The filename of the original sources

• PKG_SOURCE_URL
Where to download the sources from (no trailing slash), you can add
multiple download sources by separating them with a
and a carriage return.

• PKG_MD5SUM
A checksum to validate the download

• PKG_CAT
How to decompress the sources (zcat, bzcat, unzip)

• PKG_BUILD_DIR
Where to compile the package

The PKG_* variables define where to download the package from; @SF is a special
keyword for downloading packages from sourceforge. There is also another key-
word of @GNU for grabbing GNU source releases. If any of the above mentionned
download source fails, the OpenWrt mirrors will be used as source.

The md5sum (if present) is used to verify the package was downloaded correctly
and PKG_BUILD_DIR defines where to find the package after the sources are
uncompressed into $(BUILD_DIR).

At the bottom of the file is where the real magic happens, ”BuildPackage” is a
macro set up by the earlier include statements. BuildPackage only takes one
argument directly – the name of the package to be built, in this case ”bridge”.
All other information is taken from the define blocks. This is a way of providing
a level of verbosity, it’s inherently clear what the contents of the description
template in Package/bridge is, which wouldn’t be the case if we passed this
information directly as the Nth argument to BuildPackage.

2.1. THE BUILD SYSTEM 25

BuildPackage uses the following defines:

Package/<name>:
<name> matches the argument passed to buildroot, this describes the package
the menuconfig and ipkg entries. Within Package/<name> you can define the
following variables:

• SECTION
The type of package (currently unused)

• CATEGORY
Which menu it appears in menuconfig: Network, Sound, Utilities, Multi-
media ...

• TITLE
A short description of the package

• URL
Where to find the original software

• MAINTAINER (optional)
Who to contact concerning the package

• DEPENDS (optional)
Which packages must be built/installed before this package. To reference
a dependency defined in the same Makefile, use <dependency name>. If
defined as an external package, use +<dependency name>. For a kernel
version dependency use: @LINUX 2 <minor version>

• BUILDONLY (optional)
Set this option to 1 if you do NOT want your package to appear in menu-
config. This is useful for packages which are only used as build dependen-
cies.

Package/<name>/conffiles (optional):
A list of config files installed by this package, one file per line.

Build/Prepare (optional):
A set of commands to unpack and patch the sources. You may safely leave this
undefined.

Build/Configure (optional):
You can leave this undefined if the source doesn’t use configure or has a normal
config script, otherwise you can put your own commands here or use ”$(call
Build/Configure/Default,<first list of arguments, second list>)”as
above to pass in additional arguments for a standard configure script. The first
list of arguments will be passed to the configure script like that: -arg 1 -arg
2. The second list contains arguments that should be defined before running
the configure script such as autoconf or compiler specific variables.

To make it easier to modify the configure command line, you can either extend
or completely override the following variables:

26 CHAPTER 2. DEVELOPMENT ISSUES

• CONFIGURE_ARGS
Contains all command line arguments (format: -arg 1 -arg 2)

• CONFIGURE_VARS
Contains all environment variables that are passed to ./configure (format:
NAME="value")

Build/Compile (optional):
How to compile the source; in most cases you should leave this undefined.

As with Build/Configure there are two variables that allow you to override
the make command line environment variables and flags:

• MAKE_FLAGS
Contains all command line arguments (typically variable overrides like
NAME="value"

• MAKE_VARS
Contains all environment variables that are passed to the make command

Build/InstallDev (optional):
If your package provides a library that needs to be made available to other pack-
ages, you can use the Build/InstallDev template to copy it into the staging
directory which is used to collect all files that other packages might depend on
at build time. When it is called by the build system, two parameters are passed
to it. $(1) points to the regular staging dir, typically staging_dir/ARCH , while
$(2) points to staging_dir/host. The host staging dir is only used for binaries,
which are to be executed or linked against on the host and its bin/ subdirec-
tory is included in the PATH which is passed down to the build system processes.
Please use $(1) and $(2) here instead of the build system variables $(STAG-
ING_DIR) and $(STAGING_DIR_HOST), because the build system behavior when
staging libraries might change in the future to include automatic uninstallation.

Package/<name>/install:
A set of commands to copy files out of the compiled source and into the ipkg
which is represented by the $(1) directory. Note that there are currently 4
defined install macros:

• INSTALL_DIR
install -d -m0755

• INSTALL_BIN
install -m0755

• INSTALL_DATA
install -m0644

• INSTALL_CONF
install -m0600

The reason that some of the defines are prefixed by ”Package/<name> ” and
others are simply ”Build” is because of the possibility of generating multiple

2.1. THE BUILD SYSTEM 27

packages from a single source. OpenWrt works under the assumption of one
source per package Makefile, but you can split that source into as many packages
as desired. Since you only need to compile the sources once, there’s one global
set of ”Build” defines, but you can add as many ”Package/<name>” defines as
you want by adding extra calls to BuildPackage – see the dropbear package for
an example.

After you have created your package/<name> /Makefile, the new package will
automatically show in the menu the next time you run ”make menuconfig” and
if selected will be built automatically the next time ”make” is run.

2.1.3 Creating kernel modules packages

The OpenWrt distribution makes the distinction between two kind of kernel
modules, those coming along with the mainline kernel, and the others available
as a separate project. We will see later that a common template is used for both
of them.

For kernel modules that are part of the mainline kernel source, the makefiles
are located in package/kernel/modules/*.mk and they appear under the section
”Kernel modules”

For external kernel modules, you can add them to the build system just like if
they were software packages by defining a KernelPackage section in the package
makefile.

Here for instance the Makefile for the I2C subsytem kernel modules :

1 # $Id $
2

3 I2CMENU:=I2C Bus
4

5 define KernelPackage/i2c-core
6 TITLE:=I2C support
7 DESCRIPTION:=Kernel modules for i2c support
8 SUBMENU:=$(I2CMENU)
9 KCONFIG:=CONFIG_I2C_CORE CONFIG_I2C_DEV

10 FILES:=$(MODULES_DIR)/kernel/drivers/i2c/*.$(LINUX_KMOD_SUFFIX)
11 AUTOLOAD:=$(call AutoLoad,50,i2c-core i2c-dev)
12 endef
13 $(eval $(call KernelPackage,i2c-core))

To group kernel modules under a common description in menuconfig, you might
want to define a <description>MENU variable on top of the kernel modules
makefile.

• TITLE
The name of the module as seen via menuconfig

• DESCRIPTION
The description as seen via help in menuconfig

28 CHAPTER 2. DEVELOPMENT ISSUES

• SUBMENU
The sub menu under which this package will be seen

• KCONFIG
Kernel configuration option dependency. For external modules, remove it.

• FILES
Files you want to inlude to this kernel module package, separate with
spaces.

• AUTOLOAD
Modules that will be loaded automatically on boot, the order you write
them is the order they would be loaded.

After you have created your package/kernel/modules/<name>.mk, the new
kernel modules package will automatically show in the menu under ”Kernel
modules” next time you run ”make menuconfig” and if selected will be built
automatically the next time ”make” is run.

2.1.4 Conventions

There are a couple conventions to follow regarding packages:

• files

1. configuration files follow the convention
<name>.conf

2. init files follow the convention
<name>.init

• patches

1. patches are numerically prefixed and named related to what they do

2.1.5 Troubleshooting

If you find your package doesn’t show up in menuconfig, try the following com-
mand to see if you get the correct description:

TOPDIR=$PWD make -C package/<name> DUMP=1 V=99

If you’re just having trouble getting your package to compile, there’s a few
shortcuts you can take. Instead of waiting for make to get to your package, you
can run one of the following:

• make package/<name> /clean V=99

• make package/<name> /install V=99

2.1. THE BUILD SYSTEM 29

Another nice trick is that if the source directory under build_dir/<arch> is
newer than the package directory, it won’t clobber it by unpacking the sources
again. If you were working on a patch you could simply edit the sources un-
der the build_dir/<arch> /<source> directory and run the install command
above, when satisfied, copy the patched sources elsewhere and diff them with
the unpatched sources. A warning though - if you go modify anything under
package/<name> it will remove the old sources and unpack a fresh copy.

Other useful targets include:

• make package/<name> /prepare V=99

• make package/<name> /compile V=99

• make package/<name> /configure V=99

2.1.6 Using build environments

OpenWrt provides a means of building images for multiple configurations which
can use multiple targets in one single checkout. These environments store a
copy of the .config file generated by make menuconfig and the contents of the
./files folder. The script ./scripts/env is used to manage these environ-
ments, it uses git (which needs to be installed on your system) as backend for
version control.

The command

./scripts/env help

produces a short help text with a list of commands.

To create a new environment named current, run the following command

./scripts/env new current

This will move your .config file and ./files (if it exists) to the env/ subdi-
rectory and create symlinks in the base folder.

After running make menuconfig or changing things in files/, your current state
will differ from what has been saved before. To show these changes, use:

./scripts/env diff

If you want to save these changes, run:

./scripts/env save

If you want to revert your changes to the previously saved copy, run:

./scripts/env revert

30 CHAPTER 2. DEVELOPMENT ISSUES

If you want, you can now create a second environment using the new command.
It will ask you whether you want to make it a clone of the current environment
(e.g. for minor changes) or if you want to start with a clean version (e.g. for
selecting a new target).

To switch to a different environment (e.g. test1), use:

./scripts/env switch test1

To rename the current branch to a new name (e.g. test2), use:

./scripts/env rename test2

If you want to get rid of environment switching and keep everything in the base
directory again, use:

./scripts/env clear

2.2 Extra tools

2.2.1 Image Builder

2.2.2 SDK

2.3 Adding platform support

Linux is now one of the most widespread operating system for embedded devices
due to its openess as well as the wide variety of platforms it can run on. Many
manufacturer actually use it in firmware you can find on many devices: DVB-
T decoders, routers, print servers, DVD players ... Most of the time the stock
firmware is not really open to the consumer, even if it uses open source software.

You might be interested in running a Linux based firmware for your router for
various reasons: extending the use of a network protocol (such as IPv6), having
new features, new piece of software inside, or for security reasons. A fully open-
source firmware is de-facto needed for such applications, since you want to be free
to use this or that version of a particular reason, be able to correct a particular
bug. Few manufacturers do ship their routers with a Sample Development Kit,
that would allow you to create your own and custom firmware and most of the
time, when they do, you will most likely not be able to complete the firmware
creation process.

This is one of the reasons why OpenWrt and other firmware exists: providing a
version independent, and tools independent firmware, that can be run on various
platforms, known to be running Linux originally.

2.3. ADDING PLATFORM SUPPORT 31

2.3.1 Which Operating System does this device run?

There is a lot of methods to ensure your device is running Linux. Some of them
do need your router to be unscrewed and open, some can be done by probing
the device using its external network interfaces.

Operating System fingerprinting and port scanning

A large bunch of tools over the Internet exists in order to let you do OS finger-
printing, we will show here an example using nmap:

nmap -P0 -O <IP address>
Starting Nmap 4.20 (http://insecure.org) at 2007-01-08 11:05 CET
Interesting ports on 192.168.2.1:
Not shown: 1693 closed ports
PORT STATE SERVICE
22/tcp open ssh
23/tcp open telnet
53/tcp open domain
80/tcp open http
MAC Address: 00:13:xx:xx:xx:xx (Cisco-Linksys)
Device type: broadband router
Running: Linksys embedded
OS details: Linksys WRT54GS v4 running OpenWrt w/Linux kernel 2.4.30
Network Distance: 1 hop

nmap is able to report whether your device uses a Linux TCP/IP stack, and if
so, will show you which Linux kernel version is probably runs. This report is
quite reliable and it can make the distinction between BSD and Linux TCP/IP
stacks and others.

Using the same tool, you can also do port scanning and service version discovery.
For instance, the following command will report which IP-based services are
running on the device, and which version of the service is being used:

nmap -P0 -sV <IP address>
Starting Nmap 4.20 (http://insecure.org) at 2007-01-08 11:06 CET
Interesting ports on 192.168.2.1:
Not shown: 1693 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh Dropbear sshd 0.48 (protocol 2.0)
23/tcp open telnet Busybox telnetd
53/tcp open domain ISC Bind dnsmasq-2.35
80/tcp open http OpenWrt BusyBox httpd
MAC Address: 00:13:xx:xx:xx:xx (Cisco-Linksys)
Service Info: Device: WAP

The web server version, if identified, can be determining in knowing the Operat-
ing System. For instance, the BOA web server is typical from devices running
an open-source Unix or Unix-like.

32 CHAPTER 2. DEVELOPMENT ISSUES

Wireless Communications Fingerprinting

Although this method is not really known and widespread, using a wireless
scanner to discover which OS your router or Access Point run can be used. We
do not have a clear example of how this could be achieved, but you will have to
monitor raw 802.11 frames and compare them to a very similar device running
a Linux based firmware.

Web server security exploits

The Linksys WRT54G was originally hacked by using a ”ping bug” discovered in
the web interface. This tip has not been fixed for months by Linksys, allowing
people to enable the ”boot wait” helper process via the web interface. Many
web servers used in firmwares are open source web server, thus allowing the
code to be audited to find an exploit. Once you know the web server version
that runs on your device, by using nmap -sV or so, you might be interested in
using exploits to reach shell access on your device.

Native Telnet/SSH access

Some firmwares might have restricted or unrestricted Telnet/SSH access, if so,
try to log in with the web interface login/password and see if you can type
in some commands. This is actually the case for some Broadcom BCM963xx
based firmwares such as the one in Neuf/Cegetel ISP routers, Club-Internet ISP
CI-Box and many others. Some commands, like cat might be left here and be
used to determine the Linux kernel version.

Analysing a binary firmware image

You are very likely to find a firmware binary image on the manufacturer website,
even if your device runs a proprietary operating system. If so, you can download
it and use an hexadecimal editor to find printable words such as vmlinux, linux,
ramdisk, mtd and others.

Some Unix tools like hexdump or strings can be used to analyse the firmware.
Below there is an example with a binary firmware found other the Internet:

hexdump -C <binary image.extension> | less (more)
00000000 46 49 52 45 32 2e 35 2e 30 00 00 00 00 00 00 00 |FIRE2.5.0.......|
00000010 00 00 00 00 31 2e 30 2e 30 00 00 00 00 00 00 00 |....1.0.0.......|
00000020 00 00 00 00 00 00 00 38 00 43 36 29 00 0a e6 dc |.......8.C6)..??|
00000030 54 49 44 45 92 89 54 66 1f 8b 08 08 f8 10 68 42 |TIDE..Tf....?.hB|
00000040 02 03 72 61 6d 64 69 73 6b 00 ec 7d 09 bc d5 d3 |..ramdisk.?}.???|
00000050 da ff f3 9b f7 39 7b ef 73 f6 19 3b 53 67 ea 44 |???.?9{?s?.;Sg?D|

Scroll over the firmware to find printable words that can be significant.

2.3. ADDING PLATFORM SUPPORT 33

Amount of flash memory

Linux can hardly fit in a 2MB flash device, once you have opened the device and
located the flash chip, try to find its characteristics on the Internet. If your flash
chip is a 2MB or less device, your device is most likely to run a proprietary OS
such as WindRiver VxWorks, or a custom manufacturer OS like Zyxel ZynOS.

OpenWrt does not currently run on devices which have 2MB or less of flash
memory. This limitation will probably not be worked around since those devices
are most of the time micro-routers, or Wireless Access Points, which are not the
main OpenWrt target.

Pluging a serial port

By using a serial port and a level shifter, you may reach the console that is
being shown by the device for debugging or flashing purposes. By analysing the
output of this device, you can easily notice if the device uses a Linux kernel or
something different.

2.3.2 Finding and using the manufacturer SDK

Once you are sure your device run a Linux based firmware, you will be able to
start hacking on it. If the manufacturer respected the GPL, it will have released
a Sample Development Kit with the device.

GPL violations

Some manufacturers do release a Linux based binary firmware, with no sources
at all. The first step before doing anything is to read the license coming with
your device, then write them about this lack of Open Source code. If the manu-
facturer answers you they do not have to release a SDK containing Open Source
software, then we recommend you get in touch with the gpl-violations.org com-
munity.

You will find below a sample letter that can be sent to the manufacturer:

Miss, Mister,

I am using a <device name>, and I cannot find neither on your
website nor on the CD-ROM the open source software used to
build or modify the firmware.

In conformance to the GPL license, you have to release the following
sources:

• complete toolchain that made the kernel and applications
be compiled (gcc, binutils, libc)

• tools to build a custom firmware (mksquashfs, mkcramfs ...)

• kernel sources with patches to make it run on this specific
hardware, this does not include binary drivers

34 CHAPTER 2. DEVELOPMENT ISSUES

Thank you very much in advance for your answer.

Best regards, <your name>

Using the SDK

Once the SDK is available, you are most likely not to be able to build a complete
or functional firmware using it, but parts of it, like only the kernel, or only the
root filesystem. Most manufacturers do not really care releasing a tool that do
work every time you uncompress and use it.

You should anyway be able to use the following components:

• kernel sources with more or less functional patches for your hardware

• binary drivers linked or to be linked with the shipped kernel version

• packages of the toolchain used to compile the whole firmware: gcc, binutils,
libc or uClibc

• binary tools to create a valid firmware image

Your work can be divided into the following tasks:

• create a clean patch of the hardware specific part of the linux kernel

• spot potential kernel GPL violations especially on netfilter and USB stack
stuff

• make the binary drivers work, until there are open source drivers

• use standard a GNU toolchain to make working executables

• understand and write open source tools to generate a valid firmware image

Creating a hardware specific kernel patch

Most of the time, the kernel source that comes along with the SDK is not really
clean, and is not a standard Linux version, it also has architecture specific fixes
backported from the CVS or the git repository of the kernel development trees.
Anyway, some parts can be easily isolated and used as a good start to make a
vanilla kernel work your hardware.

Some directories are very likely to have local modifications needed to make your
hardware be recognized and used under Linux. First of all, you need to find
out the linux kernel version that is used by your hardware, this can be found by
editing the linux/Makefile file.

head -5 linux-2.x.x/Makefile
VERSION = 2
PATCHLEVEL = x
SUBLEVEL = y
EXTRAVERSION = z
NAME=A fancy name

2.3. ADDING PLATFORM SUPPORT 35

So now, you know that you have to download a standard kernel tarball at
kernel.org that matches the version being used by your hardware.

Then you can create a diff file between the two trees, especially for the following
directories:

diff -urN linux-2.x.x/arch/<sub architecture> linux-2.x.x-modified/arch/<sub architecture> > 01-architecture.patch
diff -urN linux-2.x.x/include/ linux-2.x.x-modified/include > 02-includes.patch
diff -urN linux-2.x.x/drivers/ linux-2.x.x-modified/drivers > 03-drivers.patch

This will constitute a basic set of three patches that are very likely to contain
any needed modifications that has been made to the stock Linux kernel to run
on your specific device. Of course, the content produced by the diff -urN may
not always be relevant, so that you have to clean up those patches to only let
the ”must have” code into them.

The first patch will contain all the code that is needed by the board to be
initialized at startup, as well as processor detection and other boot time specific
fixes.

The second patch will contain all useful definitions for that board: addresses,
kernel granularity, redefinitions, processor family and features ...

The third patch may contain drivers for: serial console, ethernet NIC, wireless
NIC, USB NIC ... Most of the time this patch contains nothing else than ”glue”
code that has been added to make the binary driver work with the Linux kernel.
This code might not be useful if you plan on writing drivers from scratch for
this hardware.

Using the device bootloader

The bootloader is the first program that is started right after your device has
been powered on. This program, can be more or less sophisticated, some do let
you do network booting, USB mass storage booting ... The bootloader is device
and architecture specific, some bootloaders were designed to be universal such
as RedBoot or U-Boot so that you can meet those loaders on totally different
platforms and expect them to behave the same way.

If your device runs a proprietary operating system, you are very likely to deal
with a proprietary boot loader as well. This may not always be a limitation,
some proprietary bootloaders can even have source code available (i.e : Broad-
com CFE).

According to the bootloader features, hacking on the device will be more or
less easier. It is very probable that the bootloader, even exotic and rare, has
a documentation somewhere over the Internet. In order to know what will be
possible with your bootloader and the way you are going to hack the device,
look over the following features :

• does the bootloader allow net booting via bootp/DHCP/NFS or tftp

• does the bootloader accept loading ELF binaries ?

36 CHAPTER 2. DEVELOPMENT ISSUES

• does the bootloader have a kernel/firmware size limitation ?

• does the bootloader expect a firmware format to be loaded with ?

• are the loaded files executed from RAM or flash ?

Net booting is something very convenient, because you will only have to set
up network booting servers on your development station, and keep the original
firmware on the device till you are sure you can replace it. This also prevents
your device from being flashed, and potentially bricked every time you want to
test a modification on the kernel/filesystem.

If your device needs to be flashed every time you load a firmware, the bootlader
might only accept a specific firmware format to be loaded, so that you will have
to understand the firmware format as well.

Making binary drivers work

As we have explained before, manufacturers do release binary drivers in their
GPL tarball. When those drivers are statically linked into the kernel, they
become GPL as well, fortunately or unfortunately, most of the drivers are not
statically linked. This anyway lets you a chance to dynamically link the driver
with the current kernel version, and try to make them work together.

This is one of the most tricky and grey part of the fully open source projects.
Some drivers require few modifications to be working with your custom kernel,
because they worked with an earlier kernel, and few modifications have been
made to the kernel in-between those versions. This is for instance the case with
the binary driver of the Broadcom BCM43xx Wireless Chipsets, where only few
differences were made to the network interface structures.

Some general principles can be applied no matter which kernel version is used
in order to make binary drivers work with your custom kernel:

• turn on kernel debugging features such as:

– CONFIG DEBUG KERNEL
– CONFIG DETECT SOFTLOCKUP
– CONFIG DEBUG KOBJECT
– CONFIG KALLSYMS
– CONFIG KALLSYMS ALL

• link binary drivers when possible to the current kernel version

• try to load those binary drivers

• catch the lockups and understand them

Most of the time, loading binary drivers will fail, and generate a kernel oops.
You can know the last symbol the binary drivers attempted to use, and see in
the kernel headers file, if you do not have to move some structures field before
or after that symbol in order to keep compatibily with both the binary driver
and the stock kernel drivers.

2.3. ADDING PLATFORM SUPPORT 37

Understanding the firmware format

You might want to understand the firmware format, even if you are not yet
capable of running a custom firmware on your device, because this is sometimes
a blocking part of the flashing process.

A firmware format is most of the time composed of the following fields:

• header, containing a firmware version and additional fields: Vendor, Hard-
ware version ...

• CRC32 checksum on either the whole file or just part of it

• Binary and/or compressed kernel image

• Binary and/or compressed root filesystem image

• potential garbage

Once you have figured out how the firmware format is partitioned, you will have
to write your own tool that produces valid firmware binaries. One thing to
be very careful here is the endianness of either the machine that produces the
binary firmware and the device that will be flashed using this binary firmware.

Writing a flash map driver

The flash map driver has an important role in making your custom firmware
work because it is responsible of mapping the correct flash regions and associated
rights to specific parts of the system such as: bootloader, kernel, user filesystem.

Writing your own flash map driver is not really a hard task once you know how
your firmware image and flash is structured. You will find below a commented
example that covers the case of the device where the bootloader can pass to the
kernel its partition plan.

First of all, you need to make your flash map driver be visible in the kernel config-
uration options, this can be done by editing the file linux/drivers/mtd/maps/Kconfig:

config MTD_DEVICE_FLASH
tristate "Device Flash device"
depends on ARCHITECTURE && DEVICE
help
Flash memory access on DEVICE boards. Currently only works with
Bootloader Foo and Bootloader Bar.

Then add your source file to the linux/drivers/mtd/maps/Makefile, so that
it will be compiled along with the kernel.

obj-\$(CONFIG_MTD_DEVICE_FLASH) += device-flash.o

38 CHAPTER 2. DEVELOPMENT ISSUES

You can then write the kernel driver itself, by creating a linux/drivers/mtd/maps/device-
flash.c C source file.

// Includes that are required for the flash map driver to know of the prototypes:
#include <asm/io.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/vmalloc.h>

// Put some flash map definitions here:
#define WINDOW_ADDR 0x1FC00000 /* Real address of the flash */
#define WINDOW_SIZE 0x400000 /* Size of flash */
#define BUSWIDTH 2 /* Buswidth */

static void __exit device_mtd_cleanup(void);

static struct mtd_info *device_mtd_info;

static struct map_info devicd_map = {
.name = "device",
.size = WINDOW_SIZE,
.bankwidth = BUSWIDTH,
.phys = WINDOW_ADDR,

};

static int __init device_mtd_init(void)
{
// Display that we found a flash map device

printk("device: 0x\%08x at 0x\%08x\n", WINDOW_SIZE, WINDOW_ADDR);
// Remap the device address to a kernel address

device_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE);

// If impossible to remap, exit with the EIO error
if (!device_map.virt) {

printk("device: Failed to ioremap\n");
return -EIO;

}

// Initialize the device map
simple_map_init(&device_map);

/* MTD informations are closely linked to the flash map device
you might also use "jedec_probe" "amd_probe" or "intel_probe" */
device_mtd_info = do_map_probe("cfi_probe", &device_map);

if (device_mtd_info) {
device_mtd_info->owner = THIS_MODULE;

2.3. ADDING PLATFORM SUPPORT 39

int parsed_nr_parts = 0;

// We try here to use the partition schema provided by the bootloader specific code
if (parsed_nr_parts == 0) {

int ret = parse_bootloader_partitions(device_mtd_info, &parsed_parts, 0);
if (ret > 0) {

part_type = "BootLoader";
parsed_nr_parts = ret;

}
}

add_mtd_partitions(devicd_mtd_info, parsed_parts, parsed_nr_parts);

return 0;
}

iounmap(device_map.virt);

return -ENXIO;
}

// This function will make the driver clean up the MTD device mapping
static void __exit device_mtd_cleanup(void)
{
// If we found a MTD device before

if (device_mtd_info) {
// Delete every partitions

del_mtd_partitions(device_mtd_info);
// Delete the associated map

map_destroy(device_mtd_info);
}

// If the virtual address is already in use
if (device_map.virt) {

// Unmap the physical address to a kernel space address
iounmap(device_map.virt);

// Reset the structure field
device_map.virt = 0;

}
}

// Macros that indicate which function is called on loading/unloading the module
module_init(device_mtd_init);
module_exit(device_mtd_cleanup);

// Macros defining license and author, parameters can be defined here too.
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Me, myself and I <memyselfandi@domain.tld");

40 CHAPTER 2. DEVELOPMENT ISSUES

2.4 Debugging and debricking

2.4.1 Adding a serial port

2.4.2 JTAG

2.5 Reporting bugs

2.5.1 Using the Trac ticket system

OpenWrt as an open source software opens its development to the community
by having a publicly browseable subversion repository. The Trac software which
comes along with a Subversion frontend, a Wiki and a ticket reporting system
is used as an interface between developers, users and contributors in order to
make the whole development process much easier and efficient.

We make distinction between two kinds of people within the Trac system:

• developers, able to report, close and fix tickets

• reporters, able to add a comment, patch, or request ticket status

Opening a ticket

A reporter might want to open a ticket for the following reasons:

• a bug affects a specific hardware and/or software and needs to be fixed

• a specific software package would be seen as part of the official OpenWrt
repository

• a feature should be added or removed from OpenWrt

Regarding the kind of ticket that is open, a patch is welcome in those cases:

• new package to be included in OpenWrt

• fix for a bug that works for the reporter and has no known side effect

• new features that can be added by modifying existing OpenWrt files

Once the ticket is open, a developer will take care of it, if so, the ticket is marked
as ”accepted” with the developer name. You can add comments at any time to
the ticket, even when it is closed.

2.6. SUBMITTING PATCHES 41

Closing a ticket

A ticket might be closed by a developer because:

• the problem is already fixed (wontfix)

• the problem described is not judged as valid, and comes along with an
explanation why (invalid)

• the developers know that this bug will be fixed upstream (wontfix)

• the problem is very similar to something that has already been reported
(duplicate)

• the problem cannot be reproduced by the developers (worksforme)

At the same time, the reporter may want to get the ticket closed since he is not
longer able to trigger the bug, or found it invalid by himself.

When a ticket is closed by a developer and marked as ”fixed”, the comment
contains the subversion changeset which corrects the bug.

2.6 Submitting patches

2.6.1 How to contribute

OpenWrt is constantly being improved. We’d like as many people to contribute
to this as we can get. If you find a change useful, by all means try to get it
incorporated into the project. This should improve OpenWrt and it should help
carry your changes forward into future versions

This section tries to lay out a procedure to enable people to submit patches in
a way that is most effective for all concerned.

It is important to do all these steps repeatedly:

• listen to what other people think.

• talk explaining what problem you are addressing and your proposed solu-
tion.

• do write useful patches including documentation.

• test. test. test.

42 CHAPTER 2. DEVELOPMENT ISSUES

2.6.2 Where to listen and talk

• google to find things related to your problem

• Mailing lists: http://lists.openwrt.org/

• Wiki: check the wiki: http://wiki.openwrt.org/OpenWrtDocs

• Forum: http://forum.openwrt.org/

• IRC: irc.freenode.net, channels #openwrt and #openwrt-devel

• TRAC: https://dev.openwrt.org/ the issue/bug/change tracking system

It is often best to document what you are doing before you do it. The process of
documentation often exposes possible improvements. Keep your documentation
up to date.

2.6.3 Patch Submission Process

1. Use git or svn to create a patch. Creating patches manually with diff -urN
also works, but is usually unnecessary.

2. Send a mail to openwrt-devel@lists.openwrt.org with the following con-
tents:

(a) [PATCH] <short description> in the Subject, followed by:

(b) (optional) a longer description of your patch in the message body

(c) Signed-off-by: Your name <your@email.address>

(d) Your actual patch, inline, not word wrapped or whitespace mangled.

3. Please read http://kerneltrap.org/Linux/Email Clients and Patches to find
out how to make sure your email client doesn’t destroy your patch.

4. Please use your real name and email address in the Signed-off-by line,
following the same guidelines as in the Linux Kernel patch submission
guidelines

5. Example of a properly formatted patch submission:
http://lists.openwrt.org/pipermail/openwrt-devel/2007-November/001334.html

http://lists.openwrt.org/
http://wiki.openwrt.org/OpenWrtDocs
http://forum.openwrt.org/
https://dev.openwrt.org/
http://kerneltrap.org/Linux/Email_Clients_and_Patches
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/SubmittingPatches;h=681e2b36195c98ea5271b76383b3a574b190b04f;hb=HEAD
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/SubmittingPatches;h=681e2b36195c98ea5271b76383b3a574b190b04f;hb=HEAD
http://lists.openwrt.org/pipermail/openwrt-devel/2007-November/001334.html

	The Router
	Getting started
	Installation
	Initial configuration
	Failsafe mode

	Configuring OpenWrt
	Network
	Wireless

	Advanced configuration
	Hotplug
	Init scripts
	Network scripts

	Development issues
	The build system
	Building an image
	Creating packages
	Creating kernel modules packages
	Conventions
	Troubleshooting
	Using build environments

	Extra tools
	Image Builder
	SDK

	Adding platform support
	Which Operating System does this device run?
	Finding and using the manufacturer SDK

	Debugging and debricking
	Adding a serial port
	JTAG

	Reporting bugs
	Using the Trac ticket system

	Submitting patches
	How to contribute
	Where to listen and talk
	Patch Submission Process

