PyWordle

Alison Gale




i
Q

Background

e Popular word guessing game
created by Josh Wardle

e Led to spinoffs using different
domains or dictionaries

e Folks have also made solvers
to try to maximize scores

Wordle

dh £



Data

e List of valid five-letter words
e List of “common” five-letter words as possible solutions



Use Cases

e Someone wants to play unlimited games
e Someone wants to build a custom game with special solutions
e Someone wants to build a solver



1 from solutions import SOLUTIONS

2 from pywordle import Wordle, Game, Status

5 wordle = Wordle(SOLUTIONS)

6 game = wordle.start_game(True)

8 while game.get_status() == Status.IN_PROGRESS:
9 guess = input("Enter your guess: ")
10 if game.is_valid(guess):

11 game.guess(guess)

12 print(str(game))

13 else:

14 print("Guess is invalid")

15

16 if game.get_status() == Status.WON:

17 print("Congrats! You won")

18 else:

19 print("Sorry, you lost. Solution was: " + game.solution)




Design

Wordle

__init__(solutions)
start_game(solution, hard_mode)
__repr__()

Game

__init__(solution, hard_mode)
guess(word)

is_valid(word)

get_status()

__str

_ 0

__repr__()




esign

33 class Game:

40 Represents an individual game of Wordle.

41

42 def __init__ (self, solution, hard_mode)

43

44 Args:

45 solution: The answer for the game.

46 hard_mode: True if previous known letters must be used.
47 Sal

48 self._solution = solution.upper()

49 self._hard_mode = hard_mode

50

51 # Set of guessed letters not in the solution.

52 self._absent_letters = set()

53

54 # Map from guessed letters to a list of indices.

55 self._correct_letters = defaultdict(set)

56

57 # Map from guessed letters to an object containing a set of indices
58 # where the letter isn't and the minimum number of instances.
59 self._moved_letters = defaultdict(

60 lambda: MovedLetter(@, WORD_LEN, set()))

61

62 self._status = Status.IN_PROGRESS

63 self._guesses = []

64 self._possible_solutions = VALID_WORDS

65

66 def guess(self, word):

67 L

68 Updates the game state to reflect the guessed word.

import random

from pywordle.game import Game, WORD_LEN

class Wordle:

"""Represents a class of games with a set of possible solutions.

def __init__(self, solutions):
Args:
solutions: List of possible solutions

if not all(len(s) WORD_LEN for s in solutions):
raise Exception("Solutions are the wrong length")

self.solutions = list(map(lambda x: x.upper(), solutions))

def start_game(self, hard_mode=False, solution=None):

Args:
hard_mode: True if previous known letters must be used.
solution: Optionally provide the solution for the game.

Returns:
A Game instance.
if not solution:
solution = random.choice(self.solutions)
elif solution not in self.solutions:
raise Exception("Solution isn't a valid word")

return Game(solution, hard_mode)

def __repr__(self):

return "Wordle({@})".format(self.solutions)



Project Structure

:= README.md Vi

py-wordle

—— LICENSE
pywordle —— README .md
Game Engine for the popular Wordle game. _ TODomd

— docs
Installing the package — design-spec.md

L functional-spec.md

To install the package, run . examples

—— interactive.py
—— solutions.py

python setup.py install

L simple.py
Usage —— pywordle

— __1nit__.py
This package provides two classes: Wordle and Game .The Wordle class allows —— game.py
you to provide a set of possible solutions from which a game can be created. L test game.py

The Game class represents a single game with a specific solution. You are test wordle py

allowed six guesses to solve the game. Here is a quick example of how you

might interact with the game: — wordle.py
—— words.py
wordle = Wordle(WORD_LIST) — Setup . py

game = wordle.create_game()
game.guess("SPILL")
print(str(game))



Lessons Learned

e Building a general purpose module adds a lot of complexity
o Game engine and solver had very disjoint constraints so | chose to
focus on making the game engine
e Continuous integration is weird to set up when using test driven
development
o Recommend using it after an initial implementation is complete or
write a small set of tests and the implementation in the same
commit



Future Work

Build in support for different length words

Incorporate the interactive example with the library

Add a new module to support solver use cases

Visualize how the set of possible solutions was narrowed down



