PyWordle

Alison Gale

Background

This project is inspired by the popular word-guessing game, Wordle. In the game, users have
six guesses to identify a hidden five-letter word. With each guess the user gets feedback on
which letters aren’t in the word, which are in the correct location, and which are in the word but
in a different location. There are some interesting edge cases when a word with multiple of the
same letter is guessed which results in different coloring depending on how many times that
letter is in the hidden word. This game inspired a series of spin-off games with different themes
(for example Taylordle is Taylor Swift themed) and a swath of solvers to find the optimal set of
guesses to identify the hidden word.

Users

For this package, there were two sets of users | considered. The first category of users were
creative folks wanting to create themed versions of the game. These users would want to just
provide a solution or list of solutions and not have to worry about the logic inside the game. The
second category of users were folks wanting to play unlimited games of Wordle. The official
game only lets you play one game per day. | also had considered a third category of users: ones
building solvers or other algorithms that would need to interact with the game state. These users
might be more technically profficientand would care about things like performance. For reasons
discussed further in the design section, | chose to focus on the first two categories of users.

For both of the use cases I'm focusing on, the use cases are pretty similar with the main
difference being the set of possible solutions being provided to the game:

User passes in a list of custom words (or the official set of words from Wordle)
User creates a game

User guesses words

Program responds with feedback on which letters are correct

honh =

Given that | wanted to build a game engine that would allow for creating themed versions of
Wordle, the main requirement was implementing a mechanism to enforce the rules of the game.
This includes enforcing the number of guesses, whether guesses are valid, and enforcing “hard
mode” constraints where information from previous guesses must be used in subsequent
guesses. Outside of that, | wanted to provide the ability to provide a custom set of solutions to
choose from and the ability to pick a solution for a given game. | also wanted to provide good
validation of inputs and data to ensure that the game is played correctly.



Design

This package utilizes two modules, Wordle and Game. The Wordle module represents a themed
version of the original game, while the Game module represents a specific instance of the game
where a user is making guesses towards the hidden solution. The diagram below highlights the
methods in each module:

Wordle Game

__init__(solutions) __init__ (solution, hard_mode)
start_game(solution, hard_mode) guess(word)

__repr__() is_valid(word)

get_status()
plot_progress()
_str_ ()

__repr__()

Within the Game module, | utilized common libraries like enum and defaultdict to represent the
state of previous guesses in order to enforce hard mode constraints. When hard mode isn’t
enabled, the process of validating guesses is very straightforward in checking whether a word is
a valid word in the English language. But when hard mode is enabled or when printing out the
string representation of a game board, there is a complex set of constraints that must be
checked.

The most interesting part of this logic is how to handle guesses with duplicates of a letter. A
letter can only be colored yellow or green at most the number of times the letter appears in the
hidden solution. Priority is given to letters colored green and then yellow letters are colored from
left to right until the correct number is reached. Any remaining ones are colored white. This can
provide interesting information to the user about the number of times a letter appears in the final
solution.

The method to get whether a guess is valid is very simple, but will help users that would prefer
to not rely on catching exceptions. | personally prefer to explicitly check for error conditions like
this because | find it to be more readable than catching an error and checking information about
the error type or message.

The method to plot progress towards the solution was a first step towards providing interesting
game analytics. In the official game, you just get a print-out of the color coded guesses that led
to the solution. In order to improve your game, it would be interesting to see which guesses
really narrowed the set of remaining solutions. This visualization provides a rough estimate of
that progress.

Within the design, | relied heavily on dunder methods like __str _and __repr__ to allow for a
more Pythonic style. So the pretty-print version of the game board is implemented ina __str__



method. | considered having the game return an object representing the state for the user to
handle on their own, but | found that there is a lot of complex logic in how to print out the board
based on the previous game state that would be useful to incorporate into the game engine.
This allowed the module to be deeper as well because it doesn’t change the public API, but
does make for a much richer functionality that is provided by the public API.

Key Decisions

When designing this package, | initially planned to make a general purpose module that could
serve the use cases of building a game engine and building a solver. As | worked through the
method signatures and the state needed to represent this logic | found that the methods used by
the solver had almost no overlap in functionality with the game engine methods. For example,
when building a solver you are interested in which words are eliminated based on information
from previous guesses. Unfortunately, the hard mode that the game enforces is a more loose
constraint than what would be needed by a solver. For example, in hard mode you can use
letters you know aren’t in the word but in a solver you wouldn’t want to use those letters.
Because these use cases were very disjoint, | decided that it didn’t make sense to include this
logic in the Game module which would increase the complexity of the module and the size of
the public API, while not benefitting the two main user types | was focusing on.

Another big decision was whether to implement this package as a single module or two different
modules. In some other libraries | looked at, there was a single module that would allow you to
play a game. This would let you pass in the set of words and game options at once before
starting a game. There are two ways this could be structured: you could either pass this all into
a constructor to play a single game or you could have a separate method to start a game. In the
first case the downside is that you must revalidate and process the list of solutions each time
you play a game. In the second case, it would be challenging to keep track of the state of
multiple games if they were being played at once. For those reasons | decided to split the logic
of processing and validating the list of solutions in a small outer module that facilitates the
creation of an instance of the Game module.

Extensibility

When designing this package, | wanted to make sure it would be easy to expand it to support a
broader set of use cases. The most obvious way to expand the game would be to support
modified game constraints like allowing different length words or different numbers of guesses.
At this time, these options aren’t configurable by the end user because | didn’t have dictionaries
for words of different lengths. But, when designing the package, | made sure to abstract out
these constants so they would be easy to change after the fact because they aren’t hardcoded.

For other extension points, it would mostly make sense to utilize the Wordle or Game modules
within another module. One example would be if someone wanted to write a solver that used
the Game module to enforce the rules of the game. There are some non-text based spin offs of
Wordle, but due to the substantial differences in how guesses are evaluated and results are
rendered, it wouldn’t make sense to extend this package to support those use cases. There is



little overlap in the actual logic so the module would become unnecessarily complex trying to
handle the different use cases.

Usage

This library allows you to easily create a themed instance of the Wordle module by providing a
set of possible solutions. From this instance you can create individual games. By default it has
hard mode disabled and selects a random solution. From there the user can make guesses
towards the solution and print out the current state of the game. Here is an example of a basic
interaction with the package:

from pywordle import Wordle

wordle = Wordle(WORD_LIST)
game = wordle.create_game()
game.guess("SPILL")
print(str(game))

Comparison

| will compare my library to the wordle-python library (https://pypi.org/project/wordle-python/)
that is available on PyPI. The main difference between our libraries is that the wordle-python

library handles all the I/O with the user while my library allows whoever uses the library to
control receiving user input and passing it to the game. Here is an example of how that library is
used:

import wordle

wordle.Wordle(word = wordle.random_answer(), real_words = True).run()

This difference allows the wordle-python library to have a single module as part of the public API
because you just call a run method to start the game. | could have consolidated all of my logic
into a single module that would take in a word list and settings, but the downside of this would
be that for each game you create you would have to revalidate the list of solutions. My design
allows that validation to be done once which improves performance for repeated games.

The wordle-python library is a highly specialized module that only lets you play with a specific
set of words. It is deep because the public API is tiny, but it is not very extensible or flexible.
This means that it is very useful for someone who wants to play that specific game on the
command line, but if someone wanted to make a Flask app that allowed someone to play the
game on a website they wouldn’t be able to use the library.


https://pypi.org/project/wordle-python/

