
PyWordle
Alison Gale

Background
● Popular word guessing game

created by Josh Wardle
● Led to spinoffs using different

domains or dictionaries
● Folks have also made solvers

to try to maximize scores

Data
● List of valid five-letter words
● List of “common” five-letter words as possible solutions

Use Cases
● Someone wants to play unlimited games
● Someone wants to build a custom game with special solutions
● Someone wants to build a solver

Demo

Design

Wordle

__init__(solutions)
start_game(solution, hard_mode)
__repr__()

Game

__init__(solution, hard_mode)
guess(word)
is_valid(word)
get_status()
__str__()
__repr__()

Design

Project Structure
py-wordle
├── LICENSE
├── README.md
├── TODO.md
├── docs
│ ├── design-spec.md
│ └── functional-spec.md
├── examples
│ ├── interactive.py
│ ├── solutions.py
│ └── simple.py
├── pywordle
│ ├── __init__.py
│ ├── game.py
│ ├── test_game.py
│ ├── test_wordle.py
│ ├── wordle.py
│ └── words.py
└── setup.py

Lessons Learned
● Building a general purpose module adds a lot of complexity

○ Game engine and solver had very disjoint constraints so I chose to
focus on making the game engine

● Continuous integration is weird to set up when using test driven
development
○ Recommend using it after an initial implementation is complete or

write a small set of tests and the implementation in the same
commit

Future Work
● Build in support for different length words
● Incorporate the interactive example with the library
● Add a new module to support solver use cases
● Visualize how the set of possible solutions was narrowed down

